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What Is Timeout?
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Real-world Timeout Problems

https://aws.amazon.com/cn/message/5467D2/
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Storage servers

Amazon DynamoDB service was down for 5 hours.
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Impacts of Timeout Bugs
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60%
29%

11%
No error message

Correct error message

Misleading error
message

Only 29% timeout bugs report the correct error messages.

Diagnosability of Timeout Bugs
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Motivating Example (Hadoop-11252)
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NameNodeDataNodes

TCP RST
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Root cause: missing RPC timeout between DataNodes and the Secondary 
NameNode.
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Root Causes of Timeout Bugs
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TScope’s Overall Architecture
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System Call Tracing

LTTng: incur negligible overhead to the server system compared to other 
tracing tools.

[14:24:43.520759222] syscall_entry_read: {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {fd=3, ...}
[14:24:43.520759222] syscall_exit_read: {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {ret = 30, ...}
[14:24:43.520760005] syscall_entry_write: {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {fd=5, ...}
[14:24:43.520760218] syscall_exit_write: {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {ret=1, ...}
[14:24:43.520943737] syscall_entry_poll {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {..., 

timeout_msecs=60000}
[14:24:43.520943940] syscall_exit_poll: {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {ret = -516, ...}
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System Call Selection

• System calls with timeout related parameters

• System calls related to network and synchronization

• System calls used by timeout configuration functions
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Selecting System Calls with Timeout 
Related Parameters

• Manually examine all the Linux system calls and discover those 
system calls that contain timeout related parameters.

• Example:                                                                           
syscall_select: has a timeout to determine how long a program 
should wait for files to become ready for I/O operations. 
syscall_futex: has a timeout to determine how long a 
synchronization operation should be blocked.
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Selecting System Calls Related to 
Network and Synchronization

• Manually extract all the system calls which are used by network 
communication or synchronization.

• Example:                                                                           
syscall_connect: connects a socket to a specified address. 
syscall_fsync: synchronizes a file’s state with storage devices.
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Selecting System Calls Used by Timeout 
Configuration Functions

• Check library functions which provide timeout configurations in 
standard C or Java libraries.                                                    
For example, wait() of java.lang.Object, sleep() and join() of  
java.lang.Thread.

• Write simple programs to run those functions and collect the 
system calls produced by those functions.
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Timeout Bug Identification

• Anomaly detection: Use SOM (Self-Organizing Map) 
model to detect system calls with abnormal execution time.

• Classification:  Identify timeout bugs by examining whether 
abnormal system calls contain timeout related parameters.

• Example:                                                                
Cassandra-5064 (non-timeout bug): sys_sche_yield ✕
MapReduce-5066 (timeout bug): sys_epoll_wait ✓
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Benchmark

• 10 Server systems: built by Java and C, 6 systems are set up in 
distributed modes.

• 19 bugs: 12 timeout bugs and 7 non-timeout bugs.
• Workloads: run simple workloads on each system.
• Diagnosability:                                                                                          

1) 17 out of 19 bugs produce no error messages or misleading error 
messages.                                                                                                
2) All 12 timeout bugs produce no error messages or misleading error 
messages.
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Timeout Bug Benchmark
Bug ID Root cause Impact

Hadoop-11252(v2.5.0) Missing timeout Hang

Hadoop-11252(v2.6.4) Misused timeout Hang

HDFS-10223 Misused timeout Several hours slowdown

Phoenix-2496 Missing timeout 10 secs slowdown

MapReduce-5066 Missing timeout Hang

Cassandra-7886 Wrong timeout handling Hang

Flume-1842 Misused timeout Several hours slowdown

Zookeeper-1366 Clock drifting Crash

Tomcat-56684 Misused timeout Hang

Flume-1819 Missing timeout Slowdown

Flume-1316 Misused timeout Slowdown

MapReduce-5724 Missing timeout Hang
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Non-timeout Bug Benchmark
Bug ID Root cause Impact

Cassandra-5064 Incorrect return value handling Hang

Apache-37680 Incorrect flag Hang

Tomcat-48827 Error in validating empty tag Failure

Tomcat-53450 Upgrade a read lock to a write lock wrongly Hang

MapReduce-3738 Hang on waiting for setting an atomic variable Hang

MySQL-65615 Incorrect truncating tables Slowdown

MySQL-54332 Two threads are deadlocked Hang
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Alternative Approaches

• PerfScope (SOCC’14)

• Clustering: DBScan algorithm

• SOM-all: do not perform system call selection

• SOM-parameter: only select system calls with timeout related 
parameters
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False Positive Rates of Anomaly Detection
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Explanation of False Positive Rates

• Clustering based method (PerfScope and clustering): 
curse of dimensionality
The time vectors formulate a 125-dimensional sparse matrix.  

• SOM based model (SOM-all and SOM-parameter): 
1) Detected anomalies should be reduced when we consider 

less system calls in the selection set.
2) The selection set is more correlated to timeout when we 

narrow the selection set.
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Classification Results of Timeout Bugs
Bug ID PerfScope Clustering SOM-all SOM-parameter TScope

Hadoop-11252(v2.5.0) ✓ ✓ ✓ x ✓
Hadoop-11252(v2.6.4) ✓ x x x ✓

HDFS-10223 ✓ x ✓ ✓ ✓
Phoenix-2496 x ✓ x ✓ x

MapReduce-5066 ✓ x ✓ x ✓
Cassandra-7886 ✓ ✓ ✓ x ✓

Flume-1842 ✓ ✓ ✓ ✓ ✓
Zookeeper-1366 ✓ ✓ ✓ ✓ ✓
Tomcat-56684 ✓ ✓ ✓ ✓ ✓

Flume-1819 ✓ x ✓ x ✓
Flume-1316 ✓ x ✓ ✓ ✓

MapReduce-5724 ✓ ✓ ✓ ✓ ✓
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Classification Results of Non-timeout Bugs

Bug ID PerfScope Clustering SOM-all SOM-parameter TScope
Cassandra-5064 x x ✓ x ✓
Apache-37680 x x ✓ x ✓
Tomcat-48827 x x x x ✓
Tomcat-53450 x ✓ ✓ ✓ ✓

MapReduce-3738 x x x x ✓
MySQL-65615 x x x ✓ ✓
MySQL-54332 x x x ✓ ✓
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TScope’s Overhead
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Related Work
• Performance bug detection and diagnosis: X-ray(OSDI’12), 

PerfCompass(TPDS’16), Fournier et al.(SIGOPS’10), PerfScope(SOCC’14)                 

TScope identifies timeout bugs that cause performance problems.

• Machine learning based performance debugging: 
EntomoModel(MASCOTS’10), UBL(ICAC’12), Lee et al.(ICAC’16), Fchain(ICDCS’13) 

TScope performs unique feature selection to achieve high detection 
precision.

• Static bug detection tools: Jin et al.(PLDI’12), Toddler(ICSE’13), Dcatch(ASPLOS 
’17), Xiao et al.(ISSTA’13), Chen et al.(ICSE’14)                                                             

TScope identifies timeout anomalies by performing feature selection 
statically and anomaly detection dynamically.
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Conclusion
• TScope combines timeout related feature selection and runtime anomaly 

detection to achieve higher bug identification precision.

• TScope does not require any application instrumentation for bug detection.

• We implemented a prototype of TScope and conducted extensive 
experiments using 19 real world bugs.

• TScope is light-weight and efficient, which imposes less than 1% runtime 
overhead and produces identification results within minutes.
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