
TScope: Automatic Timeout Bug
Identification for Server Systems

Jingzhu He, Ting Dai, Xiaohui (Helen) Gu
NC State University

1

What Is Timeout?

Request

✕

ServerClient

hang

2

Real-world Timeout Problems

https://aws.amazon.com/cn/message/5467D2/

3

Storage servers

Amazon DynamoDB service was down for 5 hours.

Metadata server

Send req 1

Timeout Send req 2

Send req 3

…

Bug OverloadedTimeout
Timeout

No proper limit
of retry.

Impacts of Timeout Bugs

40%

33%

25%

2%System unavailability

Job failure

Performance degradation

Data loss

4

60%
29%

11%
No error message

Correct error message

Misleading error
message

Only 29% timeout bugs report the correct error messages.

Diagnosability of Timeout Bugs

5

Motivating Example (Hadoop-11252)

Secondary
NameNodeDataNodes

TCP RST

hang

Root cause: missing RPC timeout between DataNodes and the Secondary
NameNode.

6

Root Causes of Timeout Bugs

47%

31%

12%

5% 5%

Misused timeout value
Missing timeout checking
Improper handling
Unnecessary timeout
Clock drifting

7

TScope’s Overall Architecture
Physical host

Application & VM

Pe
rf

or
m

an
ce

 a
no

m
al

y
al

er
t System call

selection

Feature
extraction

Timeout bug
identification

Kernel
tracing module

Xen/KVM hypervisor

TScope

Sycall trace

8

System Call Tracing

LTTng: incur negligible overhead to the server system compared to other
tracing tools.

[14:24:43.520759222] syscall_entry_read: {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {fd=3, ...}
[14:24:43.520759222] syscall_exit_read: {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {ret = 30, ...}
[14:24:43.520760005] syscall_entry_write: {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {fd=5, ...}
[14:24:43.520760218] syscall_exit_write: {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {ret=1, ...}
[14:24:43.520943737] syscall_entry_poll {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {...,

timeout_msecs=60000}
[14:24:43.520943940] syscall_exit_poll: {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {ret = -516, ...}

9

System Call Selection

• System calls with timeout related parameters

• System calls related to network and synchronization

• System calls used by timeout configuration functions

10

Selecting System Calls with Timeout
Related Parameters

• Manually examine all the Linux system calls and discover those
system calls that contain timeout related parameters.

• Example:
syscall_select: has a timeout to determine how long a program
should wait for files to become ready for I/O operations.
syscall_futex: has a timeout to determine how long a
synchronization operation should be blocked.

11

Selecting System Calls Related to
Network and Synchronization

• Manually extract all the system calls which are used by network
communication or synchronization.

• Example:
syscall_connect: connects a socket to a specified address.
syscall_fsync: synchronizes a file’s state with storage devices.

12

Selecting System Calls Used by Timeout
Configuration Functions

• Check library functions which provide timeout configurations in
standard C or Java libraries.
For example, wait() of java.lang.Object, sleep() and join() of
java.lang.Thread.

• Write simple programs to run those functions and collect the
system calls produced by those functions.

13

Timeout Bug Identification

• Anomaly detection: Use SOM (Self-Organizing Map)
model to detect system calls with abnormal execution time.

• Classification: Identify timeout bugs by examining whether
abnormal system calls contain timeout related parameters.

• Example:
Cassandra-5064 (non-timeout bug): sys_sche_yield ✕
MapReduce-5066 (timeout bug): sys_epoll_wait ✓

14

Benchmark

• 10 Server systems: built by Java and C, 6 systems are set up in
distributed modes.

• 19 bugs: 12 timeout bugs and 7 non-timeout bugs.
• Workloads: run simple workloads on each system.
• Diagnosability:

1) 17 out of 19 bugs produce no error messages or misleading error
messages.
2) All 12 timeout bugs produce no error messages or misleading error
messages.

15

Timeout Bug Benchmark
Bug ID Root cause Impact

Hadoop-11252(v2.5.0) Missing timeout Hang

Hadoop-11252(v2.6.4) Misused timeout Hang

HDFS-10223 Misused timeout Several hours slowdown

Phoenix-2496 Missing timeout 10 secs slowdown

MapReduce-5066 Missing timeout Hang

Cassandra-7886 Wrong timeout handling Hang

Flume-1842 Misused timeout Several hours slowdown

Zookeeper-1366 Clock drifting Crash

Tomcat-56684 Misused timeout Hang

Flume-1819 Missing timeout Slowdown

Flume-1316 Misused timeout Slowdown

MapReduce-5724 Missing timeout Hang
16

Non-timeout Bug Benchmark
Bug ID Root cause Impact

Cassandra-5064 Incorrect return value handling Hang

Apache-37680 Incorrect flag Hang

Tomcat-48827 Error in validating empty tag Failure

Tomcat-53450 Upgrade a read lock to a write lock wrongly Hang

MapReduce-3738 Hang on waiting for setting an atomic variable Hang

MySQL-65615 Incorrect truncating tables Slowdown

MySQL-54332 Two threads are deadlocked Hang

17

Alternative Approaches

• PerfScope (SOCC’14)

• Clustering: DBScan algorithm

• SOM-all: do not perform system call selection

• SOM-parameter: only select system calls with timeout related
parameters

18

False Positive Rates of Anomaly Detection

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

Had
oo

p-11
25

2(v
2.5

.0)

Had
oo

p-11
25

2(v
2.6

.4)

HDFS-10
22

3

Pho
en

ix-
24

96

Map
Red

uc
e-5

06
6

Cas
sa

ndra
-78

86

Flu
me-1

84
2

Zo
ok

ee
pe

r-1
36

6

To
mca

t-5
66

84

Flu
me-1

81
9

Flu
me-1

31
6

Map
Red

uc
e-5

72
4

PerfScope Clustering SOM-all SOM-parameter TScope 19

Explanation of False Positive Rates

• Clustering based method (PerfScope and clustering):
curse of dimensionality
The time vectors formulate a 125-dimensional sparse matrix.

• SOM based model (SOM-all and SOM-parameter):
1) Detected anomalies should be reduced when we consider

less system calls in the selection set.
2) The selection set is more correlated to timeout when we

narrow the selection set.

20

Classification Results of Timeout Bugs
Bug ID PerfScope Clustering SOM-all SOM-parameter TScope

Hadoop-11252(v2.5.0) ✓ ✓ ✓ x ✓
Hadoop-11252(v2.6.4) ✓ x x x ✓

HDFS-10223 ✓ x ✓ ✓ ✓
Phoenix-2496 x ✓ x ✓ x

MapReduce-5066 ✓ x ✓ x ✓
Cassandra-7886 ✓ ✓ ✓ x ✓

Flume-1842 ✓ ✓ ✓ ✓ ✓
Zookeeper-1366 ✓ ✓ ✓ ✓ ✓
Tomcat-56684 ✓ ✓ ✓ ✓ ✓

Flume-1819 ✓ x ✓ x ✓
Flume-1316 ✓ x ✓ ✓ ✓

MapReduce-5724 ✓ ✓ ✓ ✓ ✓
21

Classification Results of Non-timeout Bugs

Bug ID PerfScope Clustering SOM-all SOM-parameter TScope
Cassandra-5064 x x ✓ x ✓
Apache-37680 x x ✓ x ✓
Tomcat-48827 x x x x ✓
Tomcat-53450 x ✓ ✓ ✓ ✓

MapReduce-3738 x x x x ✓
MySQL-65615 x x x ✓ ✓
MySQL-54332 x x x ✓ ✓

22

TScope’s Overhead

0
20
40
60
80

100
120
140
160
180

Had
oo

p-11
25

2(v
2.5

.0)

Had
oo

p-11
25

2(v
2.6

.4)

HDFS-10
22

3

Pho
en

ix-
24

96

Map
Red

uc
e-5

06
6

Cas
sa

ndra
-78

86

Flu
me-1

84
2

Zo
ok

ee
pe

r-1
36

6

To
mca

t-5
66

84

Flu
me-1

81
9

Flu
me-1

31
6

Map
Red

uc
e-5

72
4

Feature Extraction Timeout Bug Identification

Ex
ec

ut
io

n
tim

e
(s

)

23

Related Work
• Performance bug detection and diagnosis: X-ray(OSDI’12),

PerfCompass(TPDS’16), Fournier et al.(SIGOPS’10), PerfScope(SOCC’14)

TScope identifies timeout bugs that cause performance problems.

• Machine learning based performance debugging:
EntomoModel(MASCOTS’10), UBL(ICAC’12), Lee et al.(ICAC’16), Fchain(ICDCS’13)

TScope performs unique feature selection to achieve high detection
precision.

• Static bug detection tools: Jin et al.(PLDI’12), Toddler(ICSE’13), Dcatch(ASPLOS
’17), Xiao et al.(ISSTA’13), Chen et al.(ICSE’14)

TScope identifies timeout anomalies by performing feature selection
statically and anomaly detection dynamically.

24

Conclusion
• TScope combines timeout related feature selection and runtime anomaly

detection to achieve higher bug identification precision.

• TScope does not require any application instrumentation for bug detection.

• We implemented a prototype of TScope and conducted extensive
experiments using 19 real world bugs.

• TScope is light-weight and efficient, which imposes less than 1% runtime
overhead and produces identification results within minutes.

25

Acknowledgements

• Thanks for the comments from anonymous reviewers.

• TScope is supported in part of NSF CNS1513942 grant and NSF
CNS1149445 grant.

• Thanks for the audience.

26

