
TScope: Automatic Timeout Bug Identification for

Server Systems

Jingzhu He, Ting Dai, Xiaohui Gu
North Carolina State University

{jhe16, tdai, xgu}@ncsu.edu

Abstract—Timeout is commonly used to handle unexpected
failures in server systems. However, improper use of timeout
can cause server systems to hang or experience performance
degradation. In this paper, we present TScope, an automatic
timeout bug identification tool for server systems. TScope lever-
ages kernel-level system call tracing and machine learning based
anomaly detection and feature extraction schemes to achieve
timeout bug identification. TScope introduces a unique system
call selection scheme to achieve higher accuracy than existing
generic performance bug detection tools. We have implemented
a prototype of TScope and conducted extensive experiments using
19 real-world server performance bugs, including 12 timeout bugs
and 7 non-timeout performance bugs. The experimental results
show that TScope correctly classifies 18 out of 19 bugs. Compared
to existing runtime bug detection schemes, TScope reduces the
average false positive rate from 47.24% to 0.8%. TScope is
light-weight and does not require application instrumentation,
which makes it practical for production server performance bug
identification.

I. INTRODUCTION

Timeout is commonly used as a failover mechanism in com-

plex server systems. For example, when a server component

s1 sends a request to another component s2, s1 can use the

timeout mechanism to avoid infinite waiting in case s2 fails

to respond. However, recent studies [1], [2], [3] show that

timeout bugs widely exist in real world server systems and

can cause server to hang or slowdown. As an example of real

world production system failure, a timeout bug caused the

Amazon DynamoDB server to experience a five-hour service

outage in 2015 [4]. Furthermore, our previous detailed timeout

bug study [3] shows that 80% timeout bugs produce no error

message or misleading error messages, which makes them

difficult to identify.

A. Motivating example

We use Hadoop-11252 [5] as a motivating example to

illustrate how timeout bugs happen. This bug occurs in Hadoop

common, a standard utility library for configuring Hadoop

cluster. This timeout bug is caused by missing timeout check-

ing for the remote procedure call (RPC) connection between

different nodes. In Hadoop clusters, nodes communicate with

each other using RPC connections. In the bug shown by Figure

1, when the RPC connection from the Secondary NameNode

to the DataNode is broken, the Secondary NameNode should

send a TCP reset message (i.e., the RST message) to inform

the DataNode to close the connection. However, in the case

of a power outage occurred on the Secondary NameNode, the

Fig. 1: Root cause of Hadoop-11252 bug. (The DataNodes

miss timeout on RPC connection, leading to system hang-

ing. Hadoop system reports no error message.)

RST messages get lost and the DataNode keeps its connection

open forever and waits endlessly for the response from the

Secondary NameNode even after the Secondary NameNode

recovers from the power outage and reboots. As a result,

the whole Hadoop system hangs and no error message is

produced. To fix the bug, the developer added a one-minute

timeout on the RPC connection from the DataNode to the

Secondary NameNode. So the DataNode will close the RPC

connection after it waits for a response from the Secondary

NameNode for one minute. After timeout, the DataNode

reconnects to the Secondary NameNode by establishing a

new RPC connection with the Secondary NameNode after it

recovers from the power outage.

B. Our Contribution

In this paper, we present TScope, a runtime timeout bug

identification tool for detecting and classifying timeout bugs

in server systems. When a server system experiences software

hang or performance slowdown1, TScope is triggered to iden-

tify whether the server performance anomaly is caused by a

timeout bug. To be practical for production servers, TScope

leverages kernel level system call tracing [8] to collect runtime

system behaviors and performs bug identification based on the

system call traces only. As a result, TScope does not require

application source code or any application instrumentation.

1Those performance anomalies can be detected by various online anomaly
detection tools (e.g., [6], [7])



Different from previous generic production server perfor-

mance bug detection tools [9], TScope focuses on identifying

timeout bugs for higher bug identification precision. To do so,

TScope first introduces a unique feature selection scheme that

performs filtering on the system call trace based on whether

the system call is related to the timeout problem. TScope

decides whether a system call is related to timeout based

on three criteria: 1) a system call includes timeout related

parameters (e.g., timeout_msecs in sys_poll system

call); 2) a system call is related to network or synchronization;

or 3) a system call is used in timeout configuration functions.

The rationale for the first selection criteria is intuitive since

a system call including a timeout related parameter will be

likely invoked in the timeout mechanism with a high chance.

The second selection criteria is derived from our previous

timeout bug study [3] where we found many timeout bugs

are triggered during network or synchronization operations.

This observation is also expected since timeout is used for

handling failures during inter-component communications or

coordinations. The third criteria allows us to include those

system calls that are used by timeout operations but not

necessarily include timeout related parameters.

After selecting timeout related system calls, TScope extracts

a list of feature vectors consisting of total execution time val-

ues of different system call types during each sampling interval

(e.g., 1 second) from the raw system call traces. The execution

time value of each system call type (e.g., sys_poll) reflects

how long the system call gets executed during the sampling

interval. TScope then performs multivariate anomaly detection

using an unsupervised behavior learning method [6]. If any

anomalies are detected, TScope then check whether those

anomalies involve any system calls that include timeout related

parameters. If the detected anomalies indeed include those

timeout specific system calls, TScope infers the detected bug

is a timeout related bug. Specifically, this paper makes the

following contributions.

• We present a specialized timeout bug identification tool

that combines timeout related feature selection and un-

supervised machine learning based anomaly detection to

achieve higher detection accuracy and more precise bug

identification than previous generic bug detection tools.

• We introduce a timeout related system call selection

scheme that comprehensively considers the system call

parameters, where the system calls are invoked (e.g., net-

work/synchronization operations), and when the system

calls are invoked (e.g., during timeout configuration) to

cover all the system calls that might be related to timeout

bug identification.

• We have implemented a prototype of TScope and con-

ducted extensive evaluation using 19 real-world perfor-

mance bugs (12 timeout bugs and 7 non-timeout bugs)

reported on 10 popular server systems. Our results show

that TScope provides correct timeout bug identifications

for 18 out of 19 performance bugs while 17 out of

those 19 performance bugs produce no error message or

Fig. 2: The overall architecture of TScope.

misleading error messages. Compared to existing generic

performance bug detection tools (e.g., PerfScope [9]),

TScope can reduce the average false positive rate from

47% to 0.8%. TScope imposes negligible overhead to

production server runtime executions and can produce

timeout bug identification results in minutes.

The rest of the paper is organized as follows. Section II

describes design details of TScope. Section III presents the

experimental evaluation. Section IV discusses related work.

Finally, the paper concludes in Section V.

II. SYSTEM DESIGN

In this section, we present the design details of the TScope

system. We first provide an overview about TScope. We then

describe the system call selection scheme followed by the

timeout bug identification details.

A. Approach Overview

TScope consists four major components as shown by Fig-

ure 2. When a server system experiences software hang or

performance slowdown, TScope first retrieves a window of

system call trace from the kernel tracing module LTTng [8].

We chose LTTng because it incurs negligible overhead to the

server system. In contrast, other system call tracing tools such

as KProbes [10], DProbes [11] and SystemTap [12] often

impose high overhead to the system. The output of LTTng

contains each system call’s timestamp, parameters, and other

detailed system call information. Normally, an application can

generate tens of millions of system call records per minute,

which often provides sufficient data for analyzing performance

bugs. Next, TScope performs system call selection to extract

those system calls which are related to timeout issues. Third,

TScope performs feature extraction over the raw system call

trace to extract a list of feature vectors consisting of total ex-

ecution time values of those selected system calls during each

sampling interval. Next, TScope performs anomaly detection

over the feature vectors to identify anomalous system calls

and check whether those anomalous system calls are timeout

related in order to infer whether the identified bug is a timeout

bug.



B. System call selection

Linux provides over 300 system calls for users to use

various privileged kernel functions. As mentioned in the

Introduction, TScope performs timeout related system call

selections using three criteria: 1) system calls that include

timeout related parameters, 2) system calls that are related to

network communications or synchronizations, and 3) system

calls that are used by timeout configuration functions. We now

discuss those selection strategies in detail.

System calls with timeout related parameters. We man-

ually examine all the Linux system calls [13] and discover all

of those system calls that contain timeout related parameters.

For example, sys_select contains a timeout argument to

determine how long a program should wait for files to become

ready for I/O operations. During our previous timeout bug

study [3], we observe that those system calls are often directly

invoked when timeout bugs are triggered.

System calls related to network and synchronization.

Similar to the first selection step, we manually extract all

the system calls which are used by network communication

or synchronization. For example, sys_connect is used to

connects a socket to a specified address and sys_fsync is

called for synchronizing a file’s state with storage devices.

The rationale for this selection criteria is that timeout is

widely used for handling failures during inter-component

communications or synchronizations. So we observe that many

timeout bugs are triggered during network or synchronization

operations [3]. As a result, those system calls related to

network and synchronizations are likely to provide important

hints for us to identify timeout bugs.

System calls used by timeout configuration functions.

In this step, TScope tries to identify those system calls that

are used by timeout configuration functions. To do so, TScope

checks those functions which provide timeout configurations

in standard C or Java libraries. For example, in Java 8

standard library, we check all the packages and identify those

functions that provide timeout configurations such as wait()

in java.lang.Object package that makes the current

thread to delay execution for a certain time period. It contains

a timeout parameter for users to define the maximum interval

the thread should wait. Other examples include sleep() and

join() in java.lang.Thread package, which define

the sleeping time and maximum alive time of a thread,

respectively. To collect system calls provided by those timeout

configuration functions, we write simple test cases to run those

functions and use LTTng to collect the system calls produced

by those functions.

Using the above three selection criteria, TScope selects

125 system calls for timeout bug identification. Although we

cannot guarantee that our scheme can include all the system

calls that are related to timeout, we believe that the system

calls we select are all highly correlated to real-world timeout

bugs.

TABLE I: An example of how to calculate time vectors

from processed system call lists.

System call Entry timestamp Exit timestamp

sys socket 1523750400 1523750500
sys read 1523750476 1523750542

sys socket 1523750502 1523752040
sys exit 1523751056 1523752037

C. System Call Feature Extraction

Each system call entry in the system call trace collected

by LTTng consists a pair of records, i.e., syscall_entry

and syscall_exit shown by Figure 3. Each record con-

tains the timestamp when the system call occurs, the de-

tailed system information, e.g., CPU ID, process ID and

thread ID, and the system call’s parameters. Some system

calls may contain timeout arguments, e.g., timeout_msecs

in syscall_entry_poll. We find that application-level

timeout values are usually passed into these arguments. Af-

ter we obtain system call trace using LTTng, we first ex-

tract the system calls occurred in the specific system using

procname. For example, if we collect system calls for

MySQL server system, we extract the system calls with

procname="mysqld". We then perform system call filter-

ing based on the timeout related system call set derived by the

previous step.

Next, we extract system call name, system call entry

timestamp, thread ID and system call exit timestamp for

each selected system call. System call name and thread ID

are easy to extract directly. To determine the exact exit

timestamp for each system call, we group system calls into

different lists according to the thread ID. After we sort the

system call list in each thread, the entry timestamp is deter-

mined by syscall_entry and the nearest corresponding

syscall_exit of the same system call determines the exit

timestamp. After exit timestamps are extracted, we sort all the

system calls based on their entry timestamps.

We then segment the selected system call list into different

samples based on a certain sampling interval (e.g., 1 second).

To create feature vector for each sample, we use execution time

of system calls. The rationale of choosing execution time over

other features such as frequency is that we aim at identifying

timeout bugs and timeout bugs often cause anomalies in

system call execution time. Specifically, we extract a time

vector V = [x1, ..., xn] for each sample where xi denotes

the total execution time of all the occurrences of a system

call si which appeared in the sample. For example, in Table I,

sys_socket appears twice with the execution time values of

100 and 1538 milliseconds. So in the time vector of this sam-

ple, the value of sys_socket is set to 100 + 1538 = 1638
milliseconds. The sys_read and sys exit have the execution

time of 66 and 981 milliseconds, respectively. So the final

time vector for this sample is [1638, 66, 981] corresponding

to three selected system calls of [sys_socket, sys_read,

sys_exit]. Since we consider 125 different system calls, the

time vector will have 125 dimensions. If a system call type



[14:24:43.520759222] syscall_entry_read: {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {fd=3, ...}

[14:24:43.520759222] syscall_exit_read: {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {ret = 30, ...}

[14:24:43.520760005] syscall_entry_write: {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {fd=5, ...}

[14:24:43.520760218] syscall_exit_write: {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {ret=1, ...}

[14:24:43.520943737] syscall_entry_poll {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {..., timeout_msecs=60000}

[14:24:43.520943940] syscall_exit_poll: {cpu_id=...}, {..., pid=5004, ..., tid=5038}, {ret = -516, ...}

Fig. 3: System call trace example collected by LTTng.

does not appear in one sample, its value is set to be 0.

D. Timeout Bug Identification

We now describe how TScope identifies a performance bug

as a timeout bug. To do so, TScope first performs anomaly

detection over extracted feature vectors to detect any system

call execution time anomalies preceding the system hang or

performance slowdown. If any anomalies are detected, TScope

checks whether those pinpointed abnormal system calls are

directly related to timeout, that is, whether the system call

includes timeout related parameters.

TScope leverages an unsupervised behavior learning (UBL)

[6] to achieve efficient anomaly detection over high dimen-

sional datasets (i.e., 125 dimensions). By choosing unsuper-

vised methods, TScope can perform online anomaly detection

without labeled training data. UBL is built on top of Self-

Organizing Map (SOM) learning methods, which is one type

of artificial neural network. The original implementation of

UBL processes system-level metrics such as CPU, memory

to detect system-level anomalies. TScope adapts the model

to process system call execution time vectors. Compared to

other anomaly detection algorithms such as clustering-based

methods, SOM can map a high dimensional space into a low

dimensional space while preserving the topological properties

of original data space, which makes it work well for high

dimensional data. Moreover, SOM can achieve higher accu-

racy than other approaches [14] by performing multi-variate

anomaly detection over high dimensional data.

We now describe how TScope performs anomaly detection

using SOM. The SOM model consists of a set of neurons

each of which is associated with a weight vector. The weight

vector has the same dimension as the time vector, which is

125 dimensions. During the model training phase, the SOM

model uses a competitive learning method to update all the

neurons. When a new training sample arrives, SOM calculates

the Euclidean distance from the training vector to all the

neurons and select the best matching neuron that has the

smallest distance to the training vector. The weight vectors

of the best matching neuron and its neighbors are updated

using the training vector. During the anomaly detection phase,

SOM finds the best matching neuron for the input time vector

in the same way as the training phase. To decide whether an

input vector is abnormal or not, we define a neighborhood

area size (NAS) for each neuron as the sum of the Euclidean

distance from the neuron to a set of its neighbors. We derived

a threshold value for the NAS metric based on a user defined

percentile value. If the NAS value of the best matching neuron

for the input vector exceeds the threshold, we say the input

vector is abnormal. The intuition behind the approach is that

normal neurons are trained together many times, which all

have small NAS values. In contrast, abnormal neurons are

rarely trained, which have large NAS values.

To perform online anomaly detection, TScope splits the

system call feature vector list into two halves with equal sizes.

The first half is used as training data to create the SOM model

while the whole set is used for anomaly detection. Note that

SOM is resilient to a small number of noises in the training

data. So our training is still valid even if the training data

consist of abnormal system calls as long as the abnormal

system calls are rare compared to normal system calls.

In addition to detecting anomalies, SOM also identifies

which system calls attribute to the detected feature vector

anomaly. TScope then checks whether those identified system

calls include timeout related parameters to classify the detected

bug as a timeout bug or non-timeout bug. For example, the

timeout bug MapReduce-5066 is caused by missing timeout

setting. When the bug is triggered, we observe that the

execution time of sys_epoll_wait significantly increases.

We observe that −1 passes into the timeout parameter of

the sys_epoll_wait, causing the sys_epoll_wait

block indefinitely. As an example of non-timeout perfor-

mance bug, Cassandra-5064 bug is caused by an incorrect

return value. When the bug occurs, the system falls into

an infinite loop. We observe that the sys_sched_yield

is called continually because the system is doing context

switches endlessly consuming 100% CPU resources. However,

sys_sched_yield does not include any timeout related

parameters.

Notice that TScope uses different selection criteria for

anomaly detection and timeout bug classification. We choose

to use an expanded set of system calls (i.e., system calls

including timeout related parameters, system calls related to

network/synchronization, system calls invoked during timeout

configuration) during anomaly detection, since just considering

system calls with timeout related parameters sometimes makes

the training dataset too small to yield accurate anomaly

detection results. Our experimental evaluation results show the

problem of limited system call selections.

III. EXPERIMENT EVALUATION

This section presents our experiment evaluation. We imple-

ment a prototype of TScope and conduct our experiment on a

host which is equipped with a quad-core Xeon 2.53Ghz CPU

along with 16GB memory and runs 64-bit Ubuntu 16.04. The



TABLE II: System description.

System Setup Mode Description

Hadoop Distributed
The utilities and libraries for Hadoop
modules

HDFS Distributed Hadoop distributed file system

MapReduce Distributed Hadoop big data processing framework

Cassandra Distributed Distributed database management system

Phoenix Distributed Parallel and relational database engine

MySQL Distributed Scalable database

Zookeeper Standalone Synchronization service

Flume Standalone
Log data collection/aggregation
/movement service

Tomcat Standalone Java servlet container

Apache Standalone HTTP server system

system call trace is collected using LTTng 2.0.1. We introduce

the evaluation methodology and the identification results. At

the end of this section, we give two detailed examples of how

TScope helps diagnose the timeout bugs.

A. Evaluation methodology

In this subsection, we describe our 19 real world bug

samples and system call trace collection.

1) Real world bug samples: We collect all the bugs from

ten open source systems. All the systems’ names, description

and setup modes are listed in Table II. These systems vary

from back-end to front-end applications, constituting typi-

cal representatives and providing a wide coverage of server

systems. We set up six systems in distributed modes, to

investigate timeout issues occurring on the communication

among different nodes in distributed systems.

We firstly describe timeout bug collection. We reproduce

12 timeout bugs, which are collected from bug repositories,

e.g., Apache JIRA [15] and Bugzila [16]. Each report contains

detailed information, e.g., version number, target platform and

system’s log information. Our reproduced bugs have a wide

coverage of root causes and system impacts in our previous

timeout bug study [3]. We cover four categories of root

causes, i.e., misused timeout value, missing timeout, improper

timeout handling and clock drifting, which occupy top 95%

root causes. We cover three categories of impacts, i.e., system

unavailability, job failure and performance degradation, which

occupy top 98% of impacts brought by timeout bugs. We list

the bugs’ description in Table III.

To evaluate our classification result on non-timeout bugs,

we reproduce 7 non-timeout performance bugs. We list them

in Table IV. These bugs can also cause system calls’ anomaly,

making it difficult to distinguish those anomalies raised from

timeout bugs.

For each bug, we start LTTng to collect system call trace

just when the application is started. After the application runs

for two to three minutes normally, we trigger the bug and

record the bug triggering time. Then the system continues to

run for about two to three minutes and we end up collecting the

system calls. We separate the dataset into two halves. We use

the first half of the dataset, representing the data generated in

the normal state of the system, to train the anomaly detection

model. We try our best to run some workloads during normal

run, with the goal to reduce the false positives caused by high

workloads. The workloads are also listed in Table III.

2) Alternative approaches: To evaluate TScope’s perfor-

mance, we compare TScope to two SOM based approaches,

an existing bug detection and diagnosis tool, i.e., PerfScope,

and another clustering approach, i.e., the DBScan clustering.

SOM-all and SOM-parameter: SOM-all and SOM-

parameter refer to the approaches of using SOM model to

identify timeout bugs under different selection sets. For SOM-

all approach, we consider all the system calls. For SOM-

parameter, we select the system calls containing timeout

related parameters only. Since SOM-all and SOM-parameter

select different sets of system calls, the false positive rates are

different.

PerfScope: PerfScope is a performance bug detection and

diagnosis tool. To be mentioned, we extract the execution units

as the samples. An execution units refer to the system call

clusters generated by the same function. We divide the system

calls based on thread ID. Besides that, we divide the system

call list according to time gaps between two consecutive

system calls. We define the time gap threshold as the mean +
2×standard deviation. If the interval between two consecutive

system calls is larger than this value, we segment the trace

between the two system calls. We use the appearance vector

as the features to cluster similar samples [17]. The appearance

vector has a similar form as the time vector. The difference

is that it only contains boolean variables and they represent

whether a system call occurs in a sample. To identify the

abnormal samples within clusters, we use the frequency vector

and the time vector as two metrics to perform the nearest

neighbor algorithm. The time vector is the same as we use.

The frequency vector represents how many times a system call

appears in a sample. We calculate the Euclidean distance of

each sample’s frequency (time) vector to its nearest neighbor’s

within each cluster. We set the threshold as the mean + 2×
standard deviation. If one sample’s distance to the nearest

neighbor is larger than the threshold considering either the

frequency vector or time vector, the sample is identified as

anomaly.

Clustering: We implement DBScan clustering to identify

timeout bugs. The implementation of sampling and feature

vector extraction is same as TScope. The advantage of DBScan

is that it does not require the number of clusters as input. DB-

Scan algorithm’s learning result is sensitive to the parameter ǫ

and minimal points. ǫ defines the radius of a cluster. It is the

threshold of Euclidean distance from the point to the cluster

center. The false positive is reduced with the decreasing of

ǫ. To reduce the false positive rate to the minimum, we set

the ǫ to 1. The minimum points refers to the minimal number

of points to form a cluster. We change the minimum points

and find that it influence the identification result little. In our

experiment, we set the minimal points to 5.



TABLE III: Timeout bugs’ description.

Bug ID System version Root cause Impact Workload

Hadoop-11252 v2.5.0 Timeout is missing for the RPC connection Hang Word count for 765MB file

Hadoop-11252 v2.6.4 Timeout is misconfigured for the RPC connection Hang Word count for 765MB file

HDFS-10223 v2.6.4
Timeout setting is ignored and timeout value is
hardcoded to a large one

Slowdown Word count for 765MB file

Phoenix-2496 v4.6.0 Timeout is missing for synchronization Slowdown Database queries

MapReduce-5066 v2.0.3-alpha Timeout is missing when JobTracker calls a URL Hang Word count for 765MB file

Cassandra-7886 v2.1.9 Wrong timeout handling Hang Database queries

Flume-1842 v1.3.0 Timeout is not calculated correctly Slowdown Writing log events to a file repeatedly

Zookeeper-1366 v3.5.0 Clock drifting Crash Checking expired events

Tomcat-56684 v6.0.39
Timeout value is set too high when accepting
socket connection

Hang Website browsing

Flume-1819 v1.3.0 Timeout is missing for reading data Slowdown Writing log events to a file repeatedly

Flume-1316 v1.1.0 Timeout is misconfigured Slowdown Writing log events to a file repeatedly

MapReduce-5724 v2.3.0 Timeout is missing Hang Word count for 765MB file

TABLE IV: Non-timeout performance bugs’ description.

Bug ID System version Root cause Impact Workload

Cassandra-5064 v1.2.0-beta Incorrect return value handling causes an infinite loop Hang Database queries

Apache-37680 v2.0.55 Incorrect flag causes infinite loop Hang Website browsing

Tomcat-48827 v6.0.24 Error in validating empty tag Job failure Website browsing

Tomcat-53450 v7.0.28 Upgrade a read lock to a write lock wrongly Hang Website browsing

MapReduce-3738 v0.23.1 Wait for an atomic variable to be set endlessly Hang Word count for 765MB file

MySQL-65615 v5.6.5-m8 Truncating tables causes disk flushing Slowdown Sysbench (benchmark)

MYSQL-54332 v5.5.5-m3 Two threads are deadlocked due to a locked table Hang Sysbench (benchmark)

B. Results analysis

We evaluate the accuracy of TScope from detection result,

the false positive rate and the classification result of timeout

bugs and non-timeout bugs.

1) Accuracy: We use the whole system call trace as input

of SOM model. When SOM model raises a alarm, we check

whether the alarms come from the samples after the bug is

triggered. If an anomaly is reported after the bug is triggered,

then the bug is viewed as truly detected. We use the standard

false positive rate AF to measure the experiment results. The

equations are given in Equation 1. Nfp is the number of false

positives, which means that TScope raise a false alarm on the

a normal sample. Ntn is the number of true negatives, which

means that TScope do not raise an alarm and it is a normal

sample actually. To make the four approaches comparable, we

all use the number of time slots in the same system call trace

to calculate the AF . The division of time slots are the same as

sampling of TScope. Nfp represents the number of time slots

with the false alarms. Similarly, Ntn represents the number

of normal time slots without alarms. To be mentioned, for

PerfScope, the time slot is identified as false positive if one

execution unit, occurring on the time slot, reports a false alarm.

AF =
Nfp

Nfp +Ntn

(1)

The detection results are shown in Table V and the false

positive rates are listed in Fig. 4. We observe that TScope

can achieve 100% detection, while PerfScope and clustering

can detect 11 and 10 out of 12 timeout bugs correspond-

ingly. However, considering the false positive rate, TScope

outperforms PerfScope and clustering a lot. For TScope, the

average false positive rate is around 1%, while PerfScope

and clustering have average false positives of 50% and 15%.

PerfScope is also based on clustering methods. The clustering

methods do not work well to find patterns for time vectors.

It can be explained by the curse of dimensionality problem

in the machine learning field. In our case, the time vectors

have 125 dimensions, representing 125 system calls in our

selection set. For a per-second trace sample, we find usually

only 10% of the 125 system call occur. For the remaining

system calls, the corresponding time vector values are all set

to 0. The time vectors constitute a high dimensional sparse

matrix. When we use clustering methods, it is difficult to

organize the data and analyze the correlation between them.

Therefore, the false positive rate is high. Another reason of

over 50% false positive for PerfScope is that, there exit some

false positive execution units which last for the whole system

running time. The consequence is that PerfScope reports false

alarms on many time intervals, when the system is running

normally.

As shown from the detection results, compared with SOM-

all, using TScope reduces the false positive rate by over

30%. The false positive rate is generally decreasing with

the decreasing of the number of system calls in the system

call selection set. It is intuitive that the anomalies should be

reduced when we consider less system calls. The detection

result of SOM-parameter approach proves that our selection set

is most appropriate. For SOM-parameter approach, although

the false positive rate is generally lower, the detection result is

very bad, with only 7 out of 12 bugs detected. The reason is

that the set of system calls with timeout related parameters is



TABLE V: Detection result of TScope and four alternative approaches for timeout bugs.

Bug ID PerfScope Clustering SOM-all SOM-parameter TScope

Hadoop-11252 (v2.5.0) ✓ ✓ ✓ ✗ ✓

Hadoop-11252 (v2.6.4) ✓ ✓ ✓ ✗ ✓

HDFS-10223 ✓ ✗ ✓ ✓ ✓

Phoenix-2496 ✗ ✓ ✓ ✓ ✓

MapReduce-5066 ✓ ✗ ✓ ✗ ✓

Cassandra-7886 ✓ ✓ ✓ ✗ ✓

Flume-1842 ✓ ✓ ✓ ✓ ✓

Zookeeper-1366 ✓ ✓ ✓ ✓ ✓

Tomcat-56684 ✓ ✓ ✓ ✓ ✓

Flume-1819 ✓ ✓ ✓ ✗ ✓

Flume-1316 ✓ ✓ ✓ ✓ ✓

MapReduce-5724 ✓ ✓ ✓ ✓ ✓

Fig. 4: False positive rate of TScope and four alternative approaches.

too small. Even though timeout value is passed into timeout

related parameter, not all the anomalies caused by timeout

bugs can manifest in these system calls. These system calls

can call other system calls, further causing anomalies in those

system calls. For example, in Flume-1819 bug, the execution

time of sys_wait4, a system call without timeout param-

eter, is abnormally prolonged, while the system calls with

timeout parameters do not report an anomaly. For Cassandra-

7886, MapReduce-5066 and Hadoop-11252(v2.5.0) bugs, the

false positive rates of SOM-parameter are even higher than

TScope’s. The reason is that there are only less than five

system calls after selection for SOM-parameter approach,

which makes training data too small to train a good model.

We conduct the classification experiments on 12 timeout

bugs and 7 non-timeout performance bugs. The 7 non-timeout

performance bugs cause either system hang or performance

degradation. All the classification results are shown in Ta-

ble VI. The results show that TScope can correctly classify

18 out of the 19 bugs. The one miss classification is Phoenix-

2496 bug. This bug causes 10 seconds delay on the system,

which is too short, compared with other timeout bugs causing

system slowdown. TScope captures the short delay but it does

not consider it as an anomaly caused by timeout bugs. TScope

outperforms other four approaches in bug classification. For

PerfScope and clustering approaches, the low classification

accuracy is caused by the curse of dimensionality problem

in high dimensional sparse datasets, which we have already

discussed. SOM-all approach can identify 10 out of 12 timeout

bugs and 3 out of 7 non-timeout bugs. SOM-all approach’s

low precision on non-timeout bugs is caused by no selection

on system calls. SOM-parameter approach can only classify

10 out of the 19 bugs. It shows that the selection set of SOM-



TABLE VI: Classification result for the 19 bugs. No. 1 to 12 are timeout bugs, while No. 13 to 19 are non-timeout

performance bugs. ✓ means the bug is identified as a timeout (non-timeout) bug and it is indeed a timeout (non-timeout)

bug. ✗ means the bug is identified as a timeout (non-timeout) bug but it is a non-timeout (timeout) bug.

ID Bug ID
Error

Message
PerfScope Clustering SOM-all SOM-parameter TScope

1 Flume-1316 (Timeout) Missing ✓ ✗ ✓ ✓ ✓

2 Flume-1819 (Timeout) Missing ✓ ✗ ✓ ✗ ✓

3 MapReduce-5066 (Timeout) Missing ✓ ✗ ✓ ✗ ✓

4 Hadoop-11252(v2.6.4) (Timeout) Missing ✓ ✗ ✗ ✗ ✓

5 HDFS-10223 (Timeout) Missing ✓ ✗ ✓ ✓ ✓

6 Tomcat-56684 (Timeout) Missing ✓ ✓ ✓ ✓ ✓

7 Zookeeper-1366 (Timeout) Missing ✓ ✓ ✓ ✓ ✓

8 Phoenix-2496 (Timeout) Missing ✗ ✗ ✗ ✓ ✗

9 Hadoop-11252(v2.5.0) (Timeout) Missing ✓ ✓ ✓ ✗ ✓

10 Cassandra-7886 (Timeout) Misleading ✓ ✓ ✓ ✗ ✓

11 Flume-1842 (Timeout) Missing ✓ ✓ ✓ ✓ ✓

12 MapReduce-5724 (Timeout) Misleading ✓ ✓ ✓ ✓ ✓

13 Cassandra-5064 (Non-timeout) Missing ✗ ✗ ✓ ✗ ✓

14 Apache-37680 (Non-timeout) Missing ✗ ✗ ✓ ✗ ✓

15 Tomcat-48827 (Non-timeout) Correct ✗ ✗ ✗ ✗ ✓

16 Tomcat-53450 (Non-timeout) Correct ✗ ✓ ✓ ✓ ✓

17 MapReduce-3738 (Non-timeout) Missing ✗ ✗ ✗ ✗ ✓

18 MySQL-65615 (Non-timeout) Missing ✗ ✗ ✗ ✓ ✓

19 MySQL-54332 (Non-timeout) Missing ✗ ✗ ✗ ✓ ✓

parameter cannot cover all the system calls related to timeout

bugs. We can see that most of the bugs produce no error

messages, even misleading messages, about the root causes.

In this case, TScope provides useful guidance for developers

to diagnose the bug. We introduce the Hadoop-11252(v2.6.4)

case in detail in the next subsection. TScope can localize the

buggy timeout variable for this bug.

Apart from checking the abnormal system calls reported by

SOM model, there are another two reasons that TScope can

classify timeout bugs. The first reason is that TScope uses

time vectors to feed into the anomaly detection model. Our

observation is that timeout bugs usually cause anomaly in

system call’s execution time, while non-timeout performance

bugs can not. The manifestation of non-timeout bug is usually

that the frequency of a particular system call’s occurrence is

changed or some rarely seen system calls occur when the bug

is triggered. In our study, we also extract frequency vector,

which represents how many times each system call appears in

a sample. We find that the classification result is worse than

that of using time vector. For example, Apache-37680 bug

is mistakenly classified as timeout bugs using the frequency

vector. The second reason is that TScope uses a unique system

call selection strategy. Those anomalies that are not caused by

timeout related system calls are filtered. For example, MySQL-

54332 bug is mistakenly classified as timeout bugs before

selection, while it is correctly classified as non-timeout bugs

after selection.

2) Overhead: The LTTng tracing overhead is less than

1%, which is negligible. TScope does not require application

profiling, which can impose significant overhead on systems.

We list the computation time of log analysis on timeout bugs

in Table VII. We can see that the average log size of the 12

timeout bugs is near 1000MB. Since the log size is large, it is

TABLE VII: Computation time of TScope on timeout bugs.

Bug ID
Log size

(MB)

Feature
Extraction

(seconds)

Identification

(seconds)

Hadoop-11252 (2.5.0) 1480 156.17 1.75

Hadoop-11252 (2.6.4) 1602 172.58 1.54

HDFS-10223 461 83.80 1.34

Phoenix-2496 710 37.79 2.04

MapReduce-5066 928 144.37 1.65

Cassandra-7886 355 70.75 1.64

Flume-1842 410 5.26 1.63

Zookeeper-1366 1206 112.58 1.52

Tomcat-56684 96 2.25 1.73

Flume-1819 463 8.05 1.65

Flume-1316 2687 26.24 2.62

MapReduce-5724 1304 96.31 2.21

significant to reduce the overhead to apply TScope in the real

world cloud systems. In Table VII, feature extraction refers to

the combination of sampling, system call selection, extracting

the time vectors and training the anomaly detection model. The

identification refers to using the built model to detect anomaly

and further identify timeout bugs. The majority of the total

computation time is spent on feature extraction. The reason is

that traversing millions of system calls and categorizing them

according to the system information is time consuming. We

observe that the average computation time is tens to hundreds

of seconds, which is fast enough to apply TScope in real-world

cloud systems.

C. Case Study

In this subsection, we discuss two examples in detail to

show how TScope’s identification results help to diagnose the

timeout bugs.



1) Hadoop-11252(v2.6.4): The root cause of this bug is

misconfiguring RPC timeout value on connection among

Hadoop cluster nodes. The misconfigured timeout value is

Integer’s maximum value, which is too long for the timeout

value. When the bug occurs, the system hangs, producing

no error message. TScope can detect the bug and identify

it as a timeout bug. Besides, TScope reports five abnormal

system calls, including the sys_epoll_wait. To find out

the misconfigured value, we collect all the timeout related

parameters of the five abnormal system calls. In this case, we

can easily find that the sys_epoll_wait has an abnormal

parameter, i.e., Integer.MAX_VALUE. Through matching

all the timeout values of the corresponding variables in the

Hadoop’s .xml configuration files, we find that the misconfig-

ured timeout value, i.e., Integer.MAX_VALUE, comes from

the timeout variable ipc.client.rpc-timeout.ms, that

exactly is the misconfigured timeout variable causing the bug.

2) Cassandra-7886: The root cause of this bug is missing

timeout on the connection between the data node and the co-

ordinator. The data node simply drops the data, when the input

data is overwhelming. It does not inform the coordinator of

the dropping data operation, causing the coordinator hanging

on waiting for the acknowledgment response of successfully

reading the data. The fixed version adds a timeout on the

waiting response operation. When the bug occurs, the system

reports the overwhelming exception, which is not relevant to

the timeout mechanism. However, TScope detects the bug and

identifies the bug as a timeout bug.

IV. RELATED WORK

In this section, we discuss related work with a focus

on describing the difference between Tscope and previous

approaches.

Performance bug detection and diagnosis. Performance

bug is notoriously difficult to detect and diagnose. Previous

work has developed both static and dynamic analysis tools

to address the challenge. For example, Fournier et al. [18]

proposes to analyze dependencies among processes to un-

derstand how the total elapsed time is distributed among

different processes. X-ray [19] presents performance sum-

marization techniques to attribute performance costs to fine-

grained events for diagnosing performance problems. PerfS-

cope [9] uses system call tracing and frequent episode mining

to localize root cause functions for performance anomalies.

PerfCompass [20] presents a tool to differentiate external

faults from internal faults based on the impact factor analysis

over detected performance anomaly faults. Different from

those generic performance bug detection and diagnosis tools,

TScope focuses on identifying timeout problems that cause

system hang or performance slowdown during production-run

of server systems.

Machine learning based performance debugging. Work

has been done to detect performance problems using machine

learning techniques. Cohen et al. [21] presents a tool based on

tree-augmented Bayesian networks to correlate system-level

metrics with high-level performance states. Lee et al. [22]

presents a fuzzy-prediction based self-tuning approach to

improve the Hadoop system performance. Votke et al. [23]

presents an analytical model to estimate performance under

various interference conditions. EntomoModel [24] uses deci-

sion tree classification to depicts the workloads and manage-

ment policies under which potential performance anomalies

are likely to. UBL [6] leverages Self-Organizing Maps to

capture emergent system behaviors and performs anomaly pre-

diction for cloud systems. FChain [25] localizes faculty com-

ponents based on the abnormal change propagation patterns

and inter-component dependency relationships. Different from

the above existing tools, TScope performs feature selection

before applying machine learning algorithms to achieve high

detection precision.

Static bug detection tools. There are a lot of existing work

on developing static bug detection tools. Jin et al. [26] conduct

a comprehensive study on performance bugs and propose

efficiency rules to detect unknown bugs statically. DCatch [27]

designs a set of happen-before rules to model concurrency

mechanisms in distributed cloud systems. Other tools focus

on detecting database’s performance anomalies [28], sequen-

tial errors [29] and inefficient nested loops [30]. Different

from those static analysis tools, TScope is a precise timeout

bug identification tool. It identifies timeout anomalies by

performing feature selection statically and anomaly detection

dynamically.

V. CONCLUSION

In this paper, we have presented TScope, an automatic

timeout bug identification tool for production server systems.

TScope combines timeout related feature selection and run-

time anomaly detection to achieve higher bug identification

precision than previous generic performance bug detection

tools. TScope does not require any application instrumentation

for bug detection, which makes it practical for production

server systems. We have implemented a prototype of TScope

and conducted extensive experiments using 19 real world

performance bugs. The experimental results show that TScope

achieves much higher timeout bug identification accuracy

than existing alternative schemes. TScope is light-weight and

efficient, which imposes less than 1% runtime overhead to

the production server and produces timeout bug identification

results within minutes.

VI. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their

valuable comments. This research is supported in part by

NSF CNS1513942 grant and NSF CNS1149445 grant. Any

opinions expressed in this paper are those of the authors and

do not necessarily reflect the views of NSF.

REFERENCES

[1] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin
et al., “What bugs live in the cloud?: A study of 3000+ issues in cloud
systems,” in SOCC, 2014.

[2] J. Huang, X. Zhang, and K. Schwan, “Understanding issue correlations:
a case study of the hadoop system,” in SOCC, 2015.



[3] T. Dai, J. He, X. Gu, and S. Lu, “Understanding real world timeout
problems in cloud server systems,” in IC2E, 2018.

[4] “Irreversible Failures: Lessons from the DynamoDB Outage,”
http://blog.scalyr.com/2015/09/irreversible-failures-lessons-from-the-
dynamodb-outage/.

[5] “Hadoop-11252,” https://issues.apache.org/jira/browse/HADOOP-
11252.

[6] D. J. Dean, H. Nguyen, and X. Gu, “UBL: Unsupervised behavior
learning for predicting performance anomalies in virtualized cloud
systems,” in ICAC, 2012.

[7] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan,
“PREPARE: Predictive performance anomaly prevention for virtualized
cloud systems,” in ICDCS, 2012.

[8] M. Desnoyers and M. R. Dagenais, “The lttng tracer: A low impact
performance and behavior monitor for gnu/linux,” in Linux Symposium,
2006.

[9] D. J. Dean, H. Nguyen, X. Gu, H. Zhang, J. Rhee, N. Arora, and
G. Jiang, “PerfScope: Practical online server performance bug inference
in production cloud computing infrastructures,” in SOCC, 2014.

[10] “KProbes,” https://lwn.net/Articles/132196/.
[11] R. J. Moore, “A universal dynamic trace for linux and other operating

systems.” in ATC, 2001, pp. 297–308.
[12] “SystemTap,” https://sourceware.org/systemtap/.
[13] “Linux system calls,” http://man7.org/linux/man-

pages/man2/syscalls.2.html.
[14] D. J. Dean, P. Wang, X. Gu, W. Enck, and G. Jin, “Automatic server

hang bug diagnosis: Feasible reality or pipe dream?” in ICAC, 2015.
[15] “Apache JIRA,” https://issues.apache.org/jira.
[16] “Bugzila,” https://www.bugzilla.org.
[17] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduc-

tion to cluster analysis. John Wiley & Sons, 2009, vol. 344.
[18] P. Fournier and M. R. Dagenais, “Analyzing blocking to debug perfor-

mance problems on multi-core systems,” in SIGOPS, 2010.
[19] M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating root-cause

diagnosis of performance anomalies in production software,” in OSDI,
2012.

[20] D. J. Dean, H. Nguyen, P. Wang, X. Gu, A. Sailer, and A. Kochut,
“Perfcompass: Online performance anomaly fault localization and in-
ference in infrastructure-as-a-service clouds,” TPDS, vol. 27, no. 6, pp.
1742–1755, 2016.

[21] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase,
“Correlating instrumentation data to system states: A building block
for automated diagnosis and control,” in OSDI, 2004.

[22] G. Lee and J. Fortes, “Hadoop performance self-tuning using a fuzzy-
prediction approach,” in ICAC, 2016.

[23] S. Votke, S. Javadi, and A. Gandhi, “Modeling and analysis of perfor-
mance under interference in the cloud,” in MASCOTS, 2017.

[24] C. Stewart, K. Shen, A. Iyengar, and J. Yin, “Entomomodel: Understand-
ing and avoiding performance anomaly manifestations,” in MASCOTS,
2010.

[25] H. Nguyen, Z. Shen, Y. Tan, and X. Gu, “FChain: Toward black-box
online fault localization for cloud systems,” in ICDCS, 2013.

[26] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and
detecting real-world performance bugs,” in PLDI, 2012.

[27] H. Liu, G. Li, J. F. Lukman, J. Li, S. Lu, H. S. Gunawi, and C. Tian,
“Dcatch: Automatically detecting distributed concurrency bugs in cloud
systems,” in Proceedings of the Twenty-Second International Conference

on Architectural Support for Programming Languages and Operating

Systems. ACM, 2017, pp. 677–691.
[28] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and

P. Flora, “Detecting performance anti-patterns for applications developed
using object-relational mapping,” in ICSE, 2014.

[29] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu, and
T. Reps, “Conseq: detecting concurrency bugs through sequential errors,”
in ACM Sigplan Notices, vol. 46, no. 3. ACM, 2011, pp. 251–264.

[30] A. Nistor, L. Song, D. Marinov, and S. Lu, “Toddler: Detecting perfor-
mance problems via similar memory-access patterns,” in ICSE, 2013.


	Introduction
	Motivating example
	Our Contribution

	System Design
	Approach Overview
	System call selection
	System Call Feature Extraction
	Timeout Bug Identification

	Experiment Evaluation
	Evaluation methodology
	Real world bug samples
	Alternative approaches

	Results analysis
	Accuracy
	Overhead

	Case Study
	Hadoop-11252(v2.6.4)
	Cassandra-7886


	Related Work
	Conclusion
	Acknowledgements
	References

