
A Study on Container Vulnerability 
Exploit Detection

Olufogorehan Tunde-Onadele, Jingzhu He, Ting Dai, Xiaohui Gu
NC State University

IC2E ’19



Motivation
• Great deployment benefits

– Portability
– Consistency
– Isolation

• Recent platform still facing security issues

2



Real-World Examples 

3



Detection Approaches

• 2 main categories of vulnerability detection
– Static detection on container images
– Dynamic detection on container instances

4



Static Detection Problems
Clair
• Container image scanning
• Depends on

– Packages and versions
– Vulnerability records

• Limitation
– High false positive rate
– Low detection rate

5



Dynamic Detection Challenges

1. Containers are often short-lived

2. Containers have dynamic available resources & 
workloads

3. Containers are lightweight 

6



Dynamic Detection
• Anomaly detection on system calls

• Studied Algorithms 
– k-Nearest Neighbors (k-NN)
– Principal Component Analysis (PCA) + k-Nearest 

Neighbors (k-NN)
– k-Means
– Self Organizing Map (SOM)

7



• Setup
Experiment 

8



Data Collection
• Deliver workload for a particular application
• Trigger the exploit at appropriate time
• Collect a detailed log of the system call information

9



Data Processing
• Frequency vector 

– System call occurences per sample

• Time vector
– System call runtime per sample

Timestamp System Calls
write read futex epoll_wait

1516544689186 100 256 430 78
1516544689286 300 759 726 356

10



Case Study: ActiveMQ (CVE-2016-3088)
• File write vulnerability

– Allows upload and execution of arbitrary files 
– Achieved using an HTTP PUT followed by an HTTP 

MOVE request

• Exploit requires 
– Knowledge of web directory
– ActiveMQ run as root

11



Case Study: ActiveMQ (CVE-2016-3088)

• Exploit (Vulhub, 2017)
– Set up a waiting shell
– HTTP PUT payload with 

crontab commands 
– HTTP MOVE to a 

crontab location
– Shell returned

12

1. PUT /fileserver/1.txt HTTP/1.1
2. Host: localhost:port#

…
7. Content-Length: 247
8. { crontab command to initiate 

socket connection to shell }

1. MOVE /fileserver/1.txt HTTP/1.1
2. Destination: file:///etc/cron.d/root
3. Host: localhost:port#

…
8. Content-Length: 0



Case Study: ActiveMQ (CVE-2016-3088)
• Sysdig log snippet

13

10:14:04.999140525 3 java (10306) > switch next=0 pgft_maj=0 pgft_min=33... 
10:14:05.049191227 3 java (10306) < futex res=-110(ETIMEDOUT) 
10:14:05.049194706 3 java (10306) > futex addr=7F20F0236928 op=129... val=1 
10:14:05.049195721 3 java (10306) < futex res=0 
10:14:05.049202973 3 java (10306) > futex addr=7F20F0236954 op=137... val=1 
...
10:14:05.089969920 3 java (10340) > getsockname 
10:14:05.089971658 3 java (10340) < getsockname 
10:14:05.089976977 3 java (10340) > getsockname 
10:14:05.089978207 3 java (10340) < getsockname 
...
10:14:05.099234302 3 java (10306) < futex res=-110(ETIMEDOUT) 
10:14:05.099237402 3 java (10306) > futex addr=7F20F0236928 op=129... 
10:14:05.099238268 3 java (10306) < futex res=0 
10:14:05.099244128 3 java (10306) > futex addr=7F20F0236954 op=137...
10:14:05.099250022 3 java (10306) > switch next=0 pgft_maj=0 pgft_min=33...
10:14:05.128901808 2 java (10346) > write fd=137(<p>pipe:[1141873]) size=1 



Case Study: ActiveMQ (CVE-2016-3088)
• Processed log snippet

14

timestamp read futex accept fcntl getsockname

1528884844803 0 4 0 0 0

1528884844903 0 4 0 0 0

1528884845003 0 4 1 3 2

1528884845103 258 599 0 200 0

1528884845203 531 1542 0 436 0



Studied Vulnerabilities
• 28 recent vulnerabilities of moderate to high severity 

• Variety of applications
– Web, file services

15



Studied Vulnerabilities
• Vulnerability categories

16



Results - Detection Rate
• Percentage of attacks in which an alarm is raised during 

exploitation

17



Results - False Positive Rate (FPR)
• False alarm rate

18



Results - Lead Time
• Time between the alarm notice and attack completion
• For the category of exploits that return a shell 

19



Results - Summary
• Self Organizing Map (SOM) shows the most promising 

results
– Detection rate
– False positive rate
– Lead time

• Detection over frequency vectors yields improved 
results over that of time vectors

20



Future Work

• Investigate more vulnerability case studies

• Improve detection accuracy of the studied schemes

21



Conclusion
• Studied 28 real world vulnerabilities in 24 common 

containerized applications

• 24 of 28 vulnerability exploits detected (85.7%)
– Static alone detects 3 of 28 exploits (10.7%)
– Dynamic alone detects 22 of 28 exploits (78.6%)

22

Thank you!



23



Backup slides



• Principal Component Analysis (PCA) + k-Nearest 
Neighbors (k-NN)

• Example
– 1-nearest neighbor
– Largest 20% of nearest neighbor distance

k-Nearest Neighbors

25



• Principal Component Analysis (PCA) + k-Nearest 
Neighbors (k-NN)

• Example
– 1-nearest neighbor
– Largest 20% of nearest neighbor distance

k-Nearest Neighbors

26



• Principal Component Analysis (PCA) + k-Nearest 
Neighbors (k-NN)

• Example
– 1-nearest neighbor
– Largest 20% of nearest neighbor distance

k-Nearest Neighbors

27



k-Nearest Neighbors
• Principal Component Analysis (PCA) + k-Nearest 

Neighbors (k-NN)
• Example

– 1-nearest neighbor
– Largest 20% of nearest neighbor distance

28



k-Nearest Neighbors
• Principal Component Analysis (PCA) + k-Nearest 

Neighbors (k-NN)
• Example

– 1-nearest neighbor
– Largest 20% of nearest neighbor distance

29



k-Means
• k-Means
• Example

– 2 clusters

30



k-Means
• k-Means
• Example

– 2 clusters

31



k-Means
• k-Means
• Example

– 2 clusters

32



k-Means
• k-Means
• Example

– 2 clusters
– Cluster size threshold of 2

33



k-Means
• k-Means
• Example

– 2 clusters
– Cluster size threshold of 2

34



k-Means
• k-Means
• Example

– 2 clusters
– Cluster size threshold of 2

35



• Self Organizing Map (SOM) learning phase
• Example 

– W(t + 1) = W(t) + N(t)L(t)(V(t) - W(t))
– W(t + 1) = W(t) + (1)(0.5)(V(t) - W(t))

Self Organizing Map

36



Self Organizing Map
• Self Organizing Map (SOM) learning phase
• Example 

– W(t + 1) = W(t) + (1)(0.5)(V(t) - W(t))
– W(t + 1) = W(t) + (0.5)(V(t) - W(t))

37



• Self Organizing Map (SOM) learning phase
• Example 

– W(t + 1) = W(t) + (0.5)(V(t) - W(t))
– [1, 2, 4] closest to [3, 2, 4]

Self Organizing Map

38



• Self Organizing Map (SOM) learning phase
• Example 

– W(t + 1) = W(t) + (0.5)(V(t) - W(t))
– W(t + 1) = [3, 2, 4] + (0.5)[-2, 0, 0] = [2, 2, 4]

Self Organizing Map

39



Self Organizing Map
• Self Organizing Map (SOM) learning phase
• Example 

– W(t + 1) = W(t) + N(t)L(t)(V(t) - W(t))
– W(t + 1) = W(t) + (1)(0.5)(V(t) - W(t))

40



Self Organizing Map
• Self Organizing Map (SOM) learning phase
• Example 

– W(t + 1) = W(t) + N(t)L(t)(V(t) - W(t))
– W(t + 1) = W(t) + (1)(0.5)(V(t) - W(t))

41



Self Organizing Map
• Self Organizing Map (SOM) sample mapping
• For each test sample

– Sum distances between the winning neuron and its 
neighbors (neighborhood area size)

– Anomalies are in the largest percentile of sizes

42



43


