Check for
Updates

Poster: Whether We Are Good Enough to Detect Server-Side
Request Forgeries in PHP-native Applications?

Yuchen Ji
ShanghaiTech University
Shanghai, China
jiych2022@shanghaitech.edu.cn

Yutian Tang
University of Glasgow
Glasgow, United Kingdom
yutian.tang@glasgow.ac.uk

Abstract

Server-side request forgeries (SSRFs) are inevitable in PHP web
applications. Existing static taint analysis tools for PHP suffer from
both high rates of false positives and false negatives in detecting
SSRF because they do not incorporate application-specific sources
and sinks, account for PHP’s dynamic type characteristics, and
include SSRF-specific taint analysis rules, leading to over-tainting
and under-tainting. In this work, we propose a technique to accu-
rately detect SSRF vulnerabilities in PHP web applications. First,
we extract both PHP built-in and application-specific functions as
candidate source and sink functions. Second, we extract explicit and
implicit function calls to construct applications’ call graphs. Third,
we perform a taint analysis based on a set of rules that prevent
over-tainting and under-tainting. We have implemented a proto-
type and evaluated it with different types of PHP web applications.
Our preliminary experiment shows that we detect 24 SSRF vulnera-
bilities in 13 different types of applications. 20 of the vulnerabilities
are known and 4 of the vulnerabilities are new.

CCS Concepts

« Security and privacy — Web application security.

Keywords
PHP; Server-Side Request Forgery; Taint Analysis

ACM Reference Format:

Yuchen Ji, Ting Dai, Yutian Tang, and Jingzhu He. 2024. Poster: Whether
We Are Good Enough to Detect Server-Side Request Forgeries in PHP-
native Applications?. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS "24), October 14—18, 2024, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3658644.3691419

*Jingzhu He is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3691419

4928

Ting Dai
IBM Research
Yorktown Height, USA
ting.dai@ibm.com

Jingzhu He*
ShanghaiTech University
Shanghai, China
hejzh1@shanghaitech.edu.cn

1 Introduction

PHP is the dominating programming language to build web applica-
tions [9]. PHP web applications allow developers to use server-side
requests to interact with third-party applications [13]. Attackers
manipulate the user inputs to send forged server-side requests, mak-
ing server-side request forgery (SSRF) vulnerabilities inevitable. Ex-
ploitation of SSRF vulnerabilities often causes severe consequences
to the applications, such as denial of service (DoS), leakage of sensi-
tive data, and remote code execution [13]. In 2019, the exploitation
of an SSRF vulnerability in Capital One’s service caused the leakage
of credit card information of more than 100 million consumers [1].
Since 2021, SSRFs have been ranked as the top 10 vulnerabilities by
OWASP, based on the occurrence, impacts, incident rates, number
of CVEs and other factors [2].

Static analysis tools are widely adopted by developers to de-
tect SSRFs. Existing taint-analysis-based static detectors such as
Rips [11] and TCHECKER [12] track the flow of (untrusted) user
input, originating from source functions, and detect whether the
tainted data reaches sink functions to send forged server-side re-
quests. However, they all have limitations.

First, those tools only consider PHP built-in sources or sinks.
In our preliminary study, we find that 46% of applications use
third-party APIs to handle user input and send server-side requests.
Without taking into consideration application-specific sources and
sinks, existing tools suffer from false negatives.

Second, existing static tools fail to accurately construct call
graphs with PHP’s dynamic type features. They do not support
implicit call flows such as magic methods [6], variable classes, or
variable methods [10]. For example, Rips generates call graphs by
matching function signatures, disregarding object-oriented meth-
ods. Thus, it overlooks method calls. TCHECKER generates call
graphs using type inference and takes into account object-oriented
methods. When it fails to infer the type of a variable, any method
call on that variable is ignored. In addition, magic methods are
ignored.

Third, existing tools contain both over-tainting and under-tainting
rules. Over-tainting rules overlook data flow paths and string sani-
tizations, which may result in non-vulnerable code being flagged as
tainted. Under-tainting rules exclude certain data structures, code
blocks, and indirect paths, which can lead to missed vulnerabilities.
For example, Rips recklessly marks the return value of a function
as tainted if any argument is tainted, regardless of whether the

https://doi.org/10.1145/3658644.3691419
https://doi.org/10.1145/3658644.3691419
https://doi.org/10.1145/3658644.3691419
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3691419&domain=pdf&date_stamp=2024-12-09

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

argument actually impacts the return value through data flows.
TCHECKER treats functions that are not connected in the call graph
as dead code and omits their analysis. However, bypassed functions
can be invoked by reflection in third-party libraries and contain
vulnerabilities. Both Rips and TCHECKER taint a string when any
of its components is tainted, even if the string is not a URL.

2 Methodology

To address the limitations of existing static detection tools, we
propose a three-step technique to detect SSRFs in PHP applications:

Step 1. Identifying Sources and Sinks: Source and sink func-
tions are crucial in detecting SSRFs. The source functions return
user input, while the sink functions send server-side requests. Ex-
isting tools gather lists of sources and sinks from the PHP standard
library. However, modern PHP applications often rely on third-party
libraries to streamline or enhance functionality, providing more
flexibility and abstraction from the underlying implementation by
encapsulating built-in sources with input encoding, validation, and
sanitization and encapsulating built-in sinks with argument vali-
dation, response parsing, and error handling, such as timeout and
retry. These third-party library sources and sinks are widely used
in modern PHP applications. We analyze them once offline and
cache the results, allowing us to quickly retrieve data from the
cache online instead of reanalyzing each time. To identify them,
we extract their function signatures and corresponding PHPDoc
documentation [8], then prompt a large language model (LLM) to
determine if they are classified as sources or sinks.

Step 2. Constructing Call Graphs: To construct call graphs
with regard to PHP’s dynamic type features, it is necessary to recog-
nize both explicit and implicit call relationships. In explicit function
calls, the method name is specified, the class name can be inferred,
and the function’s definition is available. In implicit function calls,
the definition might be absent, or the class and method names can
be variables. Four cases of implicit function calls are considered.
First, when both the method name and the class name are known,
but there is no corresponding definition in the related class, we
consider magic methods (including __call and __callstatic, which
handle calls to undefined methods). Second, when a call target has
a specific method name, but the class name cannot be inferred by
type inference, all methods with the matching name and the same
parameter count with compatible types, including magic methods,
are considered. Third, method names can be variable. When a call
target has a known class name but a variable method name, all
methods within that class that match the parameter count and
types, along with magic methods, are taken into account. Finally,
for call targets with variable class names and method names, all
methods, including magic methods, that have the same number of
parameters and compatible types are considered.

Step 3. Performing Taint Analysis: We design taint analy-
sis rules to mitigate the issues of over-tainting and under-tainting
prevalent in existing tools. To prevent over-tainting, we apply taint-
clearance rules to terminate the tracking of tainted data when it is
no longer relevant or has been neutralized. For example, casting a
variable to a non-string type clears its tainted state because it is no
longer relevant to SSRF vulnerabilities, where tainted strings are
used to craft malicious URLs. Additionally, we ensure string safety

4929

14
(15 }
16

Yuchen Ji, Ting Dai, Yutian Tang, and Jingzhu He

1 /*%
2 * Provides a safe accessor for request data...
3 */
4 public function getData(...){} // Application-specific source
5 public function updateProducts()
6 {

7 $productsData = $this->getRequest()-> getData (...);

8 S

9 foreach ($productsData as $product }) {
$products[] =[$productId=> $product ['image']];
12 }

$this->Product->changeImage($products);

public function changeImage(- $products) {

foreach ($products as $product) {

$imageFromRemoteServer = $product [$productId];

copy ($imageFromRemoteServer , $thumbsFileName);

Figure 1: A new vulnerability (CVE-2023-46725) detected by
our method. Taint propagates from identified source to PHP

built-in sink . = represents the function call flows.
represents data flows.

by identifying whether they are complete domain names or cannot
be represented as URLs, as these strings cannot be manipulated to
cause SSRF vulnerabilities. To mitigate over-tainting in array oper-
ations, we implement fine-grained taint rules that track the state of
array elements with concrete keys.To prevent under-tainting, we
model PHP syntax constructs that impact taint propagation and
account for implicit data flows created by the extract function.
Additionally, we analyze each function within the application, since
third-party libraries might call application functions via reflection.
The choices of which functions to invoke depend on custom config-
urations and runtime user input. Consequently, it is impossible to
statically ascertain that any application function is inactive code,
leading us to approximate by analyzing every function within the
application.

3 Preliminary Experiment

We have implemented a prototype following the methodology in
Section 2 using the PHAN [3] framework and GPT-4 model. We
collect applications from CVE database [5], GitHub [4], and Word-
Press plugins repository [7]. The applications collected fall into
13 categories: asset management, bookmark-sharing, content man-
agement, customer management, E-commerce, file management,
forums, library management, learning management, marketing, on-
line programming, project management, and miscellaneous systems.
We randomly select one application from each category, resulting in
13 applications for our preliminary experiment. We test our proto-
type on the selected applications and compare it with Rips [11] and
TCHECKER [12]. We first run the two tools without adjustments and
then incorporate the sources and sinks that we identified. As shown
in Table 1, our approach detects 24 (20 known and 4 new') SSRFs,

1CVE-2023-5877, CVE-2023-46725, CVE-2023-46730, CVE-2023-48006

Poster: Whether We Are Good Enough to Detect Server-Side Request Forgeries in PHP-native Applications?

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

Table 1: Preliminary experiment results. = denotes that the vulnerabilities cannot be detected by the tool out of the box. They
are detected after applying sources and sinks identified by our method.

Application # of Vulns Rips TCHECKER Ours

Category Name & Version Known New | Known New | Known New | Known New
Asset Mgmt snipe-it v5.3.3 1 0 0 0 0 0 1 0
Bookmark LinkAce v1.12.2 0 1 0 0 0 0 0 1
Content Mgmt WonderCMS v3.1.3 3 0 0 0 1 0 3 0
Customer Relationship Mgmt Group Office v6.4.196 1 1 0 0 0 0 1 1
E-Commerce FoodCoopShop v3.6.0 0 1 0 0 0 0 0 1
File Mgmt Responsive FileManager v9.13.1 4 0 4 0 4 0 4 0
Forum phpbb 3.2.0 2 0 0 0 2" 0 2 0
Library Mgmt SLiMS v9.4.2 3 0 1 0 1 0 3 0
Learning Mgmt Chamilo 1.11.18 1 0 1 0 1 0 1 0
Marketing affiliate-toolkit v3.2.0 0 1 0 1 0 1 0 1
Misc rconfig v3.9.4 3 0 0 0 3 0 3 0
Programming Codiad v1.7.8 1 0 0 0 0 0 1 0
Project Mgmt gopeak v2.1.5 1 0 0 0 0 0 1 0
Total 20 4 6 1 12 1 20 4

while Rips detected 7 (6 known and 1 new) SSRFs, and TCHECKER
detected 13 (12 known and 1 new) SSRFs.

Of the 24 identified vulnerabilities, 7 use sources and sinks from
third-party libraries. Despite applying identified sources and sinks
to Rips and TCHECKER, neither tool can identify all 7 vulnerabilities.
Rrps misses all 7 vulnerabilities due to the involvement of method
calls, a feature of object-oriented programming that Rips does not
support. Conversely, TCHECKER overlooks 5 vulnerabilities, as it
considers the vulnerable methods dead code, although the methods
are actually invoked through reflection during runtime.

3.1 Case Study

In Figure 1, we present a new SSRF (CVE-2023-46725) to demon-
strate how our method detects this vulnerability while state-of-
the-art tools fail the detection. A tainted input originates from
an application-specific source function at line #7. Our LLM-based
source identification module marks the getData() method as a
source since the documentation indicates it returns request data,
fitting the source function definition. The taint propagates to vari-
ables productsData, product, and products consecutively. When
products is passed as an actual argument to the changeImage()
method during its invocation at line #14, the formal argument
products becomes tainted. In function changeImage(), the taint
contaminates variables product and imageFromRemoteServer, and
eventually flows into the sink function at line #21. Rips fails to de-
tect this SSRF due to its lack of support for object-oriented features,
thus it cannot resolve the method call to changeImage() at line
#14. TcHECKER skips analyzing the updateProducts() function as
it is considered dead code due to not being called in the application.
However, updateProducts() is invoked in third-party libraries via
reflection, determined at runtime.

4 Conclusion

In this work, we propose a technique to efficiently identify SSRFs
in PHP applications by integrating precise taint analysis rules with

4930

a large language model (LLM). We implement a prototype and test
it on 13 open-source PHP applications, successfully identifying 24
vulnerabilities (20 known, 4 new), outperforming existing tools.
However, our technique still produces false positives caused by
input validation. For example, whitelists can be used to restrict
input strings to prevent SSRF. To reduce false positives caused by
input validation, we plan to research how to extract constraints on
user input and verify whether the constraints can be fulfilled while
triggering SSRF.

Acknowledgement

This research was supported in part by the Shanghai Sailing Pro-
gram 22YF1428600 and National Natural Science Foundation of
China under grant 62202306.

References

[1] 2019. What We Can Learn from the Capital One Hack. https://krebsonsecurity.
com/2019/08/what-we- can-learn-from- the-capital-one-hack.

[2] 2022. OWASP Top 10 - 2021. https://owasp.org/Top10/.

[3] 2022. phan-plugin. https://github.com/wikimedia/mediawiki-tools-phan-

SecurityCheckPlugin.

2023. Awesome-Selfhosted. https://github.com/awesome-selfhosted/awesome-

selfhosted.

2023. CVE database. https://cve.mitre.org/index.html.

2023. Magic Methods. https://www.php.net/manual/en/language.oop5.

overloading.php.

2023. Popular Plugins. https://wordpress.org/plugins/browse/popular.

2023. PSR-5: PHPDoc. https://github.com/php-fig/fig-standards/blob/master/

proposed/phpdoc.md.

2023. Usage statistics of PHP for websites. https://w3techs.com/technologies/

details/pl-php.

2024. Variable Functions. https://www.php.net/manual/en/functions.variable-

functions.php/.

Johannes Dahse and Thorsten Holz. 2014. Simulation of Built-in PHP Features

for Precise Static Code Analysis.. In NDSS, Vol. 14. 23-26.

Changhua Luo, Penghui Li, and Wei Meng. 2022. Tchecker: Precise static inter-

procedural analysis for detecting taint-style vulnerabilities in php applications. In

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications

Security. 2175-2188.

Giancarlo Pellegrino, Onur Catakoglu, Davide Balzarotti, and Christian Rossow.

2016. Uses and abuses of server-side requests. In Research in Attacks, Intrusions,

and Defenses: 19th International Symposium, RAID 2016, Paris, France, September

19-21, 2016, Proceedings 19. Springer, 393-414.

[4]

[13

https://krebsonsecurity.com/2019/08/what-we-can-learn-from-the-capital-one-hack
https://krebsonsecurity.com/2019/08/what-we-can-learn-from-the-capital-one-hack
https://owasp.org/Top10/
https://github.com/wikimedia/mediawiki-tools-phan-SecurityCheckPlugin
https://github.com/wikimedia/mediawiki-tools-phan-SecurityCheckPlugin
https://github.com/awesome-selfhosted/awesome-selfhosted
https://github.com/awesome-selfhosted/awesome-selfhosted
https://cve.mitre.org/index.html
https://www.php.net/manual/en/language.oop5.overloading.php
https://www.php.net/manual/en/language.oop5.overloading.php
https://wordpress.org/plugins/browse/popular
https://github.com/php-fig/fig-standards/blob/master/proposed/phpdoc.md
https://github.com/php-fig/fig-standards/blob/master/proposed/phpdoc.md
https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/pl-php
https://www.php.net/manual/en/functions.variable-functions.php /
https://www.php.net/manual/en/functions.variable-functions.php /

	Abstract
	1 Introduction
	2 Methodology
	3 Preliminary Experiment
	3.1 Case Study

	4 Conclusion
	References

