
Automatically
Detecting Risky
Scripts in
Infrastructure Code
Ting Dai, Alexei Karve, Grzegorz Koper, Sai Zeng

2

Scripts in Infrastructure code

• Modern Infrastructure-as-Code (IaC) tools support embedded
scripting languages such as Shell and PowerShell to manage
infrastructure resources and interact with applications to
execute automation procedures.

• Risky patterns in infrastructure scripts introduce bugs and
expose vulnerabilities leading to widespread of
• Business disruptions, e.g., Remove-Partition -DriveLetter 'C'
• Application performance degradations,
• Infrastructure with vulnerabilities.

3

Research Challenges

• Existing techniques and practices for checking risky patterns in IaC
embedded scripts are rudimentary.

• Industry shifts to community-based approach
§ A team of contributors have mixed skills, experiences, and

responsibilities.
§ Most contributors are system administrators (SAs) who lack the same

level of understanding and debugging support vs software developers.
§ Nearly 75% of system downtime is caused by human errors [2]. Many

service outage incidents are caused by mistakes made by SAs [1].

4

Risky Infrastructure Script Incidents

Amazon S3 service became unavailable due to a removal cmd invoked
by an SA who inadvertently removed a large set of servers. The service
disruption lasted for 5 hours with financial loss of $150 million.

Amazon service outage

Qid: 55323391

A risky script accidently deleted the system directories. Mistakenly
used // as the comment symbol (should be #).

Delete database accidently

#!/bin/sh
OUT_DIR=/data/backup/mongod/tmp // bakup folder
rm -rf $OUT_DIR/* // delete tmp folder

System directory

5

State-of-the-Art

• Existing infrastructure code linters lack the capability of checking IaC
embedded scripts, e.g., Shell, PowerShell in Ansible playbooks or Chef
cookbooks
§ Such as Ansible-lint [13], Puppet-lint [15], SLIC [38], FSMoVe [41]

• Generic script-analyzers, e.g., Shellcheck [29], PSScriptAnalyzer [35],
report issues in the scripts by checking their formats and syntaxes.
§ False positives and false negatives
§ Without correlating the identified issues with their risky behaviors

§ How the risks manifest in the production environment;
§ What the potential business consequences of the risks have;
§ How severe the negative consequences are.

Opportunity & Motivation

• Bridge the gap between generic script-analyzers and
business consequence.
• Deliver a checking framework which is robust and

accurate.

7

Infrastructure Scripts Analysis Framework

Structured
Representation Tree

generation

Input:
Infrastructure

code

SRT

Output:
Issues details

Script detection and
composition

Impact
categorization and

severity assignment

Code analysis framework

KB Risky code assignment rules

Line mapping

1

4

2

Open
source
Script

analyzers

ID, severity,
impact,

description
3

Composed
script

Issue ID,
composed

line#

8

Structure Representation Tree
Infrastructure code example

Entry

Component

Variable config unit

Business logic units

• An Ansible playbook directory

• An operation

…

…

…

Top-dow
n sequential order

Entry

Component

Component

Unit

Unit

Unit

Unit

Variable

Variable

Variable

Variable

Variable

Operation

Operation

Operation

Unit

Unit

Variable
configs

Business
logic

Operation

9

…

…

…

Top-dow
n sequential order

Entry

Component

Component

Unit

Unit

Unit

Unit

Variable

Variable

Variable

Variable

Variable

Operation

Operation

Operation

Unit

Unit

Variable
configs

Business
logic

Operation

Structure Representation Tree
A tree data-structure

The syntax abstraction of the
infrastructure code

Extract and organize the key
information

Exclude details

Ease the process of accurate
script extraction

10

…

…

…

Top-dow
n sequential order

Entry

Component

Component

Unit

Unit

Unit

Unit

Variable

Variable

Variable

Variable

Variable

Operation

Operation

Operation

Unit

Unit

Variable
configs

Business
logic

Operation

Structure Representation Tree

• Top-down sequential order
§ Reference-after-define

policy between variables
and operations

§ Happens-before
relationship among
operations

11

…

…

…

Entry

Component

Unit

Unit

Variable

Variable

Variable

Operation

Operation

Script Detection
• Traverse the SRTs, and check

whether the operation leaf
nodes use the script-related
IaC libraries.

Terraform provisioners:
local-exec, remote-exec

Puppet resource:
exec

Chef resources:
execute, script, bash, etc.

Ansible modules:
command, shell, win_shell, etc.

12

Script Composition & Templated Variable Reformat

• Recursively replace a templated
variable in raw scripts with its
value extracted from the
variable map.

• Remove the templating
language from the composed
scripts while still preserving the
variable reference.

dsmadmc -se={{tsm_servername}} -id={{tsm_id}} -
pass={{tsm_pass}} -tabdelimited -dataonly=yes -noconfirm

dsmadmc -se={{tsm_servername}} -id={{param_tsmuser}} -
pass={{param_tsmpass}} -tabdelimited -dataonly=yes -noconfirm

dsmadmc -se=${tsm_servername} -id=${param_tsmuser} -
pass=${param_tsmpass} -tabdelimited -dataonly=yes -noconfirm

tsm_id = "{{ param_tsmuser }}"
tsm_pass = "{{ param_tsmpass }}"

replace {{}} with $

Variable map

Composition

Variable reformat

Step_0

Step_1

Step_2

13

Variable Map

…

…

… Top-dow
n sequential order

Entry

Component

Unit

Unit

Var_1

Var_3

Var_2

Op_2

Op_1

Variable configs

Business logic

• Initialization: contains all
statically configured vars.
• In-time update

• Guarantee the define-
reference order:
§ Statically configured vars can

be accessed by all the ops.
§ Dynamically defined vars can

only be accessed by the later
ops.

t_0 t_1

Var_1

Var_2

Var_2’

re
f

as
gn

re
f

as
gn

Var_1

Var_2

t_2

Var_1

Var_2’

Var_3 Var_3

• Lexically scope variables
Var_2’ overrides Var_2

• Any op cannot access Var_3
before t_1

14

Impact Categorization & Severity Assignment

• Empirical study all 345 rules from ShellCheck [29] and 64 rules
from PSScriptAnalyzer [35].

Security

Availability

Non-risk • E.g., echo $(cat foo.txt)

• Context-specific based on the
infrastructure operation
criticality
§ Critical: reboot, restart, etc
§ Moderate: file r/w, etc
§ Trivial: print on terminal, etc

Performance

Reliability• E.g., find . -name '*.txt' -exec
sh -c 'echo "{}"' \;

• E.g., rm -rf /

• E.g., if ["$(find . | grep 'IMG[0-9]')"]

15

Implementation & Set Up

VM
images

Infrastructure
code repo

Travis listener

Github

Msg queue

2

4
Main

Travis DB

Travis
scheduler

Msg queue

Travis
gatekeeper

Travis logs

Travis web

Log DB

Travis
worker

Travis
build

1

3

6

58

7

10 11

12 13

9

1415

.travis.yml

SecureCode
pkgs

• Implement SecureCode
§ Check nsible playbooks
§ Propose new template

parsers
§ Reuse parsing functions in

the Ansible-lint [13]

• Integrate with IBM DevOps
CI/CD pipeline.
• Test 45 IBM Services

community github repos.

16

Output Format

ID: SC2154 Type: Warning Impact: Security Severity: High
Description: unassigned ansible_node is vulnerable to injection attacks.
Detailed description: file:///localpath/SecureCode/rules/SC2154.md

https://remotepath/SecureCode/rules/SC2154.md
Location: roles/backup_missed_unix/tasks/main.yml:24
Original: shell {{ tsm_command }} "select count(*) from sessions where

client={{ ansible_node }}"
Composed: shell dsmadmc -se=${tsm_servername} -

id=${param_tsmuser} -pass=${param_tsmpass} -tabdelimited -dataonly=yes -
noconfirm "select count(*) from sessions where client_name=${ansible_node}"

SC: ShellCheck
PS: PSScriptAnalyzer

Line number

allows a user to pass any
value from a cmd line,
when executing the
Ansible playbook

file:///localpath/SecureCode/rules/SC2154.md
https://remotepath/SecureCode/blob/master/wiki/SC2154.md

17

Detection Accuracy & Statistics

• SecureCode identifies 3535 issues in total from the 45
repositories which contain 1492 automation files.
• 116 out of 3535 issues are false positives.

High Medium Low Total
Non-risk 0 0 862 862

Availability 2 0 0 2
Performance 0 51 0 51

Security 1204 0 0 1204
Reliability 485 247 568 1300

Total 1691 298 1430 3419

18

User Experience

• We evaluate code quality using
§ The number of detected issues, range [0, 1414]
§ The number of detected issues per LOC (i.e., 𝑖𝑝𝑙 ratio), range [0, 0.45]

• We access user experience by comparing SecureCode with others
§ Throughput Improvement: LOCs reviewed per person per day

§ 5x vs manual, 2-5x vs ShellCheck, 2-3x vs PSScriptAnalyzer
§ Efficiency Gain: the number of issues to be identified

§ 5x vs manual, 2-3x vs ShellCheck, 2-3x vs PSScriptAnalyzer

19

Conclusion & Future work

• IaC embeded script analysis framework: a first step towards the
direction by identifying risky scripts in infrastructure code.
• To bridge the gap between generic state-of-the-practice script-

analyzers and business consequences.
• SecureCode is accurate.
• Next Steps

§ supporting more scripting languages,
§ supporting checking infrastructure code in other IaC tools

