
AUTOMATICALLY
DETECTING
RISKY
SCRIPTS
IN
INFRASTRUCTURE
CODE

rm
 –rf /

Re
m

ov
e-

Pa
rti

tio
n

find . -name '*.txt' -exec sh -c 'echo "{}"' \;

if ["$(find . | grep 'IM
G[0-9]')"]

Detection Accuracy &
Statistics
l SecureCode detects

3535 issues from the
45 repos with 1492
automation files.

l 116 issues are FPs.
l Stats of 3419 true

bugs are shown in the
right table.

Ting Dai (IBM Research), Alexei Karve (IBM Research), Grzegorz Koper (IBM GTS), Sai Zeng (IBM Research), “Automatically Detecting Risky Scripts in Infrastructure Code”, SoCC’20.

• Risky patterns in IaC embedded scripts introduce
bugs and expose vulnerabilities.

• Amazon S3 service outage: A removal cmd caused
5-hour service disruption with $150 million loss.

• IaC linters cannot check IaC embedded scripts.
• Generic script-analyzers introduce FPs and FNs.

l Bridge the gap between generic script-analyzers
and business consequence to deliver an accurate
checking framework.

l Generate risky code knowledge-base with severity
levels and business impact categories.

l Implement a real-world solution, i.e., SecureCode,
on the proposed framework.

Structured
Representation
Tree generation

Input:
Infrastructure

code

SRT

Output:
Issues details

Script
detection and
composition

Impact
categorization
and severity
assignment

Code analysis framework

KB Risky code assignment rules

Line mapping

1

4

2

Open
source
Script

analyzers

ID,
severity,
impact,

description
3

Composed
script

Issue ID,
composed

line#

l SecureCode checks risky scripts in Ansible
playbooks.

l Integrate with IBM CI/CD pipeline.
l Test 45 IBM Services community repos.

VM
images

Infrastructure
code repo

Travis listener

Github

Msg queue

2

4
Main

Travis DB

Travis
scheduler

Msg queue

Travis
gatekeeper

Travis logs

Travis web

Log DB

Travis
worker

Travis
build

1

3

6

58

7

10 11

12 13

9

1415

.travis.yml

SecureCode
pkgs

ID: SC2154 Type: Warning Impact: Security Severity: High
Description: unassigned ansible_node is vulnerable to injection attacks.
Detailed description: file:///localpath/SecureCode/rules/SC2154.md

https://remotepath/SecureCode/rules/SC2154.md
Location: roles/backup_missed_unix/tasks/main.yml:24
Original: shell {{ tsm_command }} "select count(*) from sessions where

client={{ ansible_node }}"
Composed: shell dsmadmc -se=${tsm_servername} -

id=${param_tsmuser} -pass=${param_tsmpass} -tabdelimited -dataonly=yes -
noconfirm "select count(*) from sessions where client_name=${ansible_node}”

Explanation: Unassigned ansible_node variable allows a user to pass any value
from a cmd line; ansible_node is used in a SQL command, which is vulnerable to
SQL injection attacks.

Impact High Medium Low Total
Non-risk 0 0 862 862

Availability 2 0 0 2
Performance 0 51 0 51
Security 1204 0 0 1204
Reliability 485 247 568 1300
Total 1691 298 1430 3419

l Throughput Improvement: LOCs reviewed per
person per day

l 5x vs manual, 2-5x vs ShellCheck, 2-3x vs
PSScriptAnalyzer

l Efficiency Gain: the number of issues to be
identified

l 5x vs manual, 2-3x vs ShellCheck, 2-3x vs
PSScriptAnalyzer

Motivations

Opportunity & Contributions

SecureCode Implementation & Setup Output Format

User Experience

Detection Accuracy
& Statistics

file:///localpath/SecureCode/rules/SC2154.md
https://remotepath/SecureCode/blob/master/wiki/SC2154.md

