
Automatically Detecting Risky Scripts in
Infrastructure Code

Ting Dai

IBM Research

ting.dai@ibm.com

Alexei Karve

IBM Research

karve@us.ibm.com

Grzegorz Koper

IBM GTS

grzegorz.koper@pl.ibm.com

Sai Zeng

IBM Research

saizeng@us.ibm.com

ABSTRACT
Infrastructure code supports embedded scripting languages

such as Shell and PowerShell to manage the infrastructure

resources and conduct life-cycle operations. Risky patterns

in the embedded scripts have widespread of negative impacts

across the whole infrastructure, causing disastrous conse-

quences. In this paper, we propose an analysis framework,

which can automatically extract and compose the embedded

scripts from infrastructure code before detecting their risky

code patterns with correlated severity levels and negative

impacts. We implement SecureCode based on the proposed

framework to check infrastructure code supported by Ansi-

ble, i.e., Ansible playbooks. We integrate SecureCode with

the DevOp pipeline deployed in IBM cloud and test Secure-

Code on 45 IBM Services community repositories. Our eval-

uation shows that SecureCode can efficiently and effectively

identify 3419 true issues with 116 false positives in minutes.

Among the 3419 true issues, 1691 have high severity levels.

CCS CONCEPTS
•Computer systems organization→Reliability;Avail-
ability; • Software and its engineering→ Software test-
ing and debugging.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SoCC ’20, October 19–21, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8137-6/20/10. . . $15.00

https://doi.org/10.1145/3419111.3421303

KEYWORDS
Infrastructure-as-Code, Ansible, Shell, PowerShell, static anal-

ysis, availability, reliability, performance, security

ACM Reference Format:
Ting Dai, Alexei Karve, Grzegorz Koper, and Sai Zeng. 2020. Auto-

matically Detecting Risky Scripts in Infrastructure Code. In ACM
Symposium on Cloud Computing (SoCC ’20), October 19–21, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/3419111.3421303

1 INTRODUCTION
Cloud computing revolutionizes the way enterprises man-

age their infrastructure. Cloud providers today host mission

critical workloads for thousands of clients in large-scale and

distributed data centers. To manage infrastructure spanning

across hundreds of thousands of servers, automation is ex-

tensively used with improved productivity for infrastructure

life-cycle operations such as provisioning and deployment,

change management, security compliance management, and

event and incident management. Such automation practices

are often referred to as Infrastructure-as-Code (IaC) while

the codified automation procedures are referred to as in-

frastructure code. In recent years, many IaC tools and tech-

niques have been developed and adopted to facilitate the

practice, such as Ansible [12], Chef [14], Puppet [16], and

Terraform [19]. Ansible, a Redhat branded tool, is one of

the mainstream automation tools for infrastructure provi-

sioning and configuration management. It is widely used by

enterprise clients.

Infrastructure code, such as Ansible playbook and Chef

cookbook, codifies mission critical operations. Not only does

it make sure infrastructure is managed for availability, relia-

bility, and security compliance, but also it guarantees that

the running applications on the infrastructure are healthy

with desirable performance. Modern IaC tools have their

own programming paradigm to write infrastructure code,

e.g., YAML for Ansible playbooks and Ruby for Chef cook-

books. They also support embedded scripting languages such

as Shell and PowerShell to either manage the infrastructure

358

https://doi.org/10.1145/3419111.3421303
https://doi.org/10.1145/3419111.3421303
https://doi.org/10.1145/3419111.3421303

SoCC ’20, October 19–21, 2020, Virtual Event, USA Ting Dai, Alexei Karve, Grzegorz Koper, and Sai Zeng

resources like operating systems, storage and networks or

interact with applications to execute the automation pro-

cedures. Risky patterns in infrastructure scripts introduce

bugs and expose vulnerabilities which lead to widespread

of negative impacts on availability, reliability, performance,

and security across the entire infrastructure composed of

hundreds of thousands of servers, causing disastrous conse-

quences. Example risky scripts such as Remove-Partition
-DriveLetter 'C' which removes the disk could result in

business disruption when they are invoked in the produc-

tion environment. Coding patterns with infinite loops can

drain the computation resource, severely degrading the per-

formance of production workloads. An unauthorized user

privilege escalation or unprotected storage of credentials

make the infrastructure vulnerable to cyber-attacks.

Unfortunately, different from traditional software pro-

grams like Java and C/C++ which are equipped with ma-

ture bug/vulnerability detection, testing, and verification

tools [23, 24, 27, 31–33, 43], existing techniques and practices

for infrastructure code and embedded scripts are rudimen-

tary [25]. It gets more challenging when the modern code

development shifts to community-based approach, where

a team of contributors have mixed skills, experiences, and

responsibilities. Particularly, most contributors are system

administrators who lack the same level of understanding

and debugging support compared with software develop-

ers [44]. Studies [2] have shown that nearly 75% of system

downtime is caused by human errors. Many service outage

incidents are caused by mistakes made by system admin-

istrators [1]. For example, in 2017, the Amazon S3 service

became unavailable due to a removal command invoked by a

system administrator who inadvertently removed a large set

of servers, affecting other AWS services in the US-EAST-1

region that rely on S3 for storage, such as S3 console, EC2

new instance launches, and AWS Lambda [8]. This service

disruption lasted for five hours [4] with financial loss of $150

million [5].

State-of-the-practice script checking tools, such as ShellCheck

[29] and PSScriptAnalyzer [35] have brought to light the

opportunity of conducting static checking over the infras-

tructure scripts. Those generic script-analyzers report issues

in the scripts by checking their formats and syntaxes. How-

ever, without correlating the identified issues with their risky

behaviors, users (e.g., system administrators) have no under-

standing about how the risks manifest in the production envi-

ronment, what the potential business consequences of those

risks have, and how severe those negative consequences

are. Bridging the gap between generic script-analyzers and

business consequence is one of the motivations of this work.

In this paper, we propose an automated analysis tool to

identify the risky scripts in the infrastructure code, which

cause availability, reliability, and performance issues or im-

pose security vulnerabilities. Our analysis tool is static with-

out running the target infrastructure code; thus it achieves

high code coverage than the dynamic detection approach

which can be interrupted by unexpected runtime errors.

Moreover, our tool is platform agnostic which requires no

system-specific or platform-specific knowledge, such as OS

version and kernel version. To realize efficient analysis, we

design a scalable analysis tool, including structured repre-

sentation tree generation, script detection and composition

to identify, transform and compose scripts from the original

infrastructure code. The composed scripts are then checked

by the open source script analyzers. The analysis results are

assigned with severity levels considering business configura-

tions and consequences. The locations of the identified issues

in the composed scripts are traced back to the locations of

the original source code along with the reported issues.

Our work makes the following contributions:

• We design a generic analysis framework to identify

risky scripts in infrastructure code. Such product is

what the current business market lacks, which has a

high internal demand in IBM.

• We generate our risky code knowledge base with sever-

ity levels and business impact categories after empiri-

cally studying all 409 rules from ShellCheck and PSS-

criptAnalyzer.

• We implement a real-world solution based on the pro-

posed framework, i.e., SecureCode, to check infrastruc-

ture code supported by Ansible, one of the industry

mainstream automation tools.

• We integrate SecureCode with the DevOp pipeline de-

ployed in IBM cloud and test it on 45 IBM Services

community repositories. Our evaluation shows that

SecureCode can identify 3419 availability, reliability,

performance and security issues residing in the infras-

tructure code, within which 1691 have high severity

levels.

The rest of the paper is organized as follows. Section 2

describes the design of our analysis framework. Section 3

presents SecureCode’s implementation using our analysis

framework to detect risky code in Ansible playbooks. Sec-

tion 4 shows the experimental evaluation. Section 5 discusses

the future work. Section 6 compares our work with related

work. Finally, the paper concludes in Section 7.

2 SYSTEM DESIGN
This section discusses our design goal, followed by the overview

of our analysis platform. We then describe the individual

analysis modules.

359

Automatically Detecting Risky Scripts in Infrastructure Code SoCC ’20, October 19–21, 2020, Virtual Event, USA

Structured Representation
Tree generation

SRT

Script detection and
composition

Impact categorization and
severity assignment

Code analysis framework

KB

Risky code
assignment rules

Line mapping

ID, severity, impact, description

Composed
script

Issue ID,
composed

line#

Open
source
Script

analyzers

Input:
Infrastructure

code

Output:
Issue details

Figure 1: System architecture and program execution
flow.

2.1 Design Goal
Our goal is to build a generic, efficient and configurable

analysis system.

Generic. Our analysis system is proposed to be generic,

which is applicable to most infrastructure code. We provide

programming interfaces for users to detect and compose

risky scripts in different infrastructure code.

Efficient. Because of the static property, our system does

not have runtime delays, e.g., task A can not start until task B
finishes. Moreover, without being interrupted by unexpected

runtime errors, we can achieve high code coverage.

Configurable. We support user-defined configurations

to better output identified issues with respect to business

clients’ compliance requirements.

2.2 System Overview
To reach the aforementioned design goal, our analysis plat-

form comes with the architecture and execution flows shown

in Figure 1. Our system takes an infrastructure code repos-

itory as input. It first generates structured representation

trees (SRTs) for the repository. By traversing each SRT, it

composes script contents by removing template renderings

after identifying that the infrastructure code invokes script

executions. After passing the composed scripts to script-

analyzers, it receives the checking results with issue IDs and

the line numbers of the composed scripts where the issues

reside. To satisfy configurable business compliance require-

ments, it assigns the severity level and potential impact for

each identified issue based on pre-defined assignment rules

retrieved from the knowledge base, and maps those issues

Entry

…

Component

Business logic

Variable
configurationsUnit

Unit

Variable

Variable…

…
Operation

Variable

Operation

Component Unit
Unit

Unit

Variable

Operation

Unit

Variable

Operation

Top-dow
n sequential order

Figure 2: The structured representation tree. The “ ”
represents the containment relationship while the
“ ” represents the dependency flow.

to the corresponding infrastructure source-code lines before

returning them back to the user.

2.3 Structured Representation Tree
Generation

What is an SRT. An SRT is a tree data-structure to rep-

resent the syntax abstraction of the infrastructure code. It

helps to extract and organize the key information in the in-

frastructure code and exclude details in order to ease the

process of accurate script extraction. As shown by Figure 2,

starting from the entry node, each SRT contains multiple

components. A component consists of multiple units. A unit

indicates variable configurations or represents business logic

operations. A unit can also contain other units. Operations

and variables are dependent on each other—an operation

uses the statically configured variables, while a variable can

be assigned with the value of an operation’s runtime output.

Figure 2 shows that units, variables and operations are

necessary in an SRT. But components are not. It is especially

common when infrastructure code only contains a few au-

tomation steps and the system administrator puts all steps

in a single automation file.

Top-down sequential order. All the operations in an

SRT are top-down sequentially ordered. So are the units and

components. For example, in Figure 2, the variable config-

uration unit is executed before business logic unit. When

constructing an SRT, the ordering dependency between dif-

ferent execution steps in the same single automation file

can be easily extracted—the topmost executes earliest. How-

ever, for the implicit ordering dependency, their execution

sequence is defined inside of the IaC platforms rather than

in the infrastructure code. The implicit ordering usually hap-

pens when referencing a statically configured variable var in

360

SoCC ’20, October 19–21, 2020, Virtual Event, USA Ting Dai, Alexei Karve, Grzegorz Koper, and Sai Zeng

Entry
A

Component
Unit

Unit

Variable

Operation

Component

Unit
Unit

Unit

Variable

Operation

Entry
B

happens-before

Procedure A

Procedure B

Top-dow
n sequential order

Entry

Figure 3: The happens-before relationship in infras-
tructure code. The “ ” represents the containment
relationship while the “ ” represents the happens-
before relationship.

an operation op. We sculpture the ordering of their (i.e., var’s
and op’s) corresponding units by following the “reference

after define” policy.

SRT forests. An infrastructure code repository contains

multiple entry nodes, representing multiple automation pro-

cedures, denoted by a forest of SRTs. The ordering depen-

dency of those SRTs is not always available or required. For

example, an administrator can trigger an install procedure
before a delete procedure or vice versa. However, the au-
tomation procedures’ ordering does not affect the generation

of their SRTs.

Merged SRTs. In other cases where two automation pro-

cedures have a happens-before relationship explicitly shown

in the infrastructure code, we merge the two SRTs into one

by introducing a new entry node and creating two contain-

ment flows from the new entry node to the two procedures.

The first-executed procedure is on the top part of the merged

SRT while the latter-executed one is on the bottom part. For

example, as shown in Figure 3, 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝐴 happens before

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝐵 , we merge them into one SRT, where the top-

down sequential ordering guarantees the happens-before

relationship.

When the happens-before relationships involve more than

two procedures and all procedures are partially ordered, we

first categorize them in different sets. Each set contains part

of the procedures which can be ordered in a determined way.

We then merge the procedures from the same set into an

SRT. For example, we have three procedures, 𝑃1, 𝑃2, and 𝑃3,

which follow the happens before relationships as 𝑃1
HB−−→ 𝑃2

and 𝑃1
HB−−→ 𝑃3. We merge 𝑃1 and 𝑃2 into one SRT, and merge

a duplicated 𝑃1 and 𝑃3 into another SRT. This also applies

to the case when all procedures are totally ordered, e.g.,

𝑃1
HB−−→ 𝑃2

HB−−→ 𝑃3. We just need to merge all of them into the

same SRT.

SRT construction. As shown in Algorithm 1, our SRT

generation follows the Breadth-First Search (BFS) procedure.

We first use the getContainedObj() function to retrieve all

Algorithm 1: SRT construction

input : infrastructure code repository 𝑟
output :a set of SRTs 𝑆

1 begin
2 𝑄 ←qeue(),𝑉 ← ∅ ⊲ initialize the queue and visit set

3 𝑉 ← 𝑉 ∪ {𝑟 } ⊲ add 𝑟 in𝑉

4 𝑃 ← getContainedObj (𝑟) ⊲ get contained objects

5 for 𝑝 ∈ 𝑃 do
6 enqeue (𝑄, 𝑝)

7 while𝑄 ≠ ∅ do
8 𝑐 ← deqeue (𝑄)

9 node𝑐 ← parseObj (𝑐) ⊲ create SRT node

10 if parent [𝑐] = ∅ then ⊲ not contained

11 𝑆 ← 𝑆 ∪ {node𝑐 } ⊲ add root node in 𝑆

12 𝑁 ← getContainedObj (𝑐) ⊲ get contained objects

13 for 𝑛 ∈ 𝑁 do
14 if 𝑛 ∉ 𝑉 then
15 enqeue (𝑄,𝑛)

16 parent [𝑛] = 𝑐

17 children[𝑐] ← children[𝑐] ∪ {𝑛} ⊲ create

containment relationship

18 𝑉 ← 𝑉 ∪ {𝑐 }
19 𝑂 ← order(𝑆) ⊲ get ordered lists for all objects

20 for 𝑅 ⊂ 𝑂 do
21 𝑒, node𝑒 ← emptynode() ⊲ create empty object, node

22 for node𝑟 ∈ 𝑅 do
23 𝑆 ← 𝑆\{node𝑟 } ⊲ remove node from 𝑆

24 children[𝑒] ← children[𝑒] ∪ {𝑟 } ⊲ create

containment relationship

25 𝑆 ← 𝑆 ∪ {node𝑒 } ⊲ add new root node in 𝑆

26 return 𝑆

the automation procedures in the root directory 𝑟 (line #4)

and add them in the queue (line #6). We then create a set

of SRTs for all the procedures in a while loop (line #7-18).

Specifically, in each iteration, we poll the head 𝑐 from the

queue (line #8) and use the parseObj() function to create

an SRT node 𝑛𝑜𝑑𝑒𝑐 to abstract the syntax of object 𝑐 (line

#9). If object 𝑐 is not contained by others, which means it is

an independent automation procedure, component or unit,

we consider 𝑛𝑜𝑑𝑒𝑐 as the SRT root node and add it in the

tree set 𝑆 (line #10-11). Next, we use the getContainedObj()
function to extract all the contained objects in 𝑐 (line #12).

For each contained object 𝑛, if not visited, we add it in the

queue (line #15) and create a containment relationship from

object 𝑛 to object 𝑐 (line #16-17). In the end of the iteration,

we add object 𝑐 in the visit set (line #18). Our SRT generation

algorithm scans the whole repository layer by layer until all

automation objects (e.g., files, folders) are abstracted in an

SRT node (i.e., entry, procedure, component, unit, variable

and operation).

361

Automatically Detecting Risky Scripts in Infrastructure Code SoCC ’20, October 19–21, 2020, Virtual Event, USA

An SRT node contains a list of attribute fields, including

type, _file_ and _line_. If the node’s type is operation, this
node contains the content of the operation in the form of

module-command pairs, e.g., "shell: ls -al". If the node’s
type is variable, it contains the variable name with the config-

ured value, e.g., "user: root". The _file_ attribute stores
the source code file path while the _line_ attribute stores
the first line number of an operation or a variable. In an

infrastructure code repository, an SRT node is uniquely iden-

tified by the ⟨_file_, _line_⟩ tuple.
To handle happens-before relationships among a forest of

SRTs in 𝑆 , we first extract the ordered lists 1 𝑂 for all of them

(line #19). Each list 𝑅 contains a sequential order among a set

of SRTs, i.e., 𝑅 ⊆ 𝑆 , 𝑅 = {𝑠𝑟𝑡1, 𝑠𝑟𝑡2, ..., 𝑠𝑟𝑡𝑛}, 𝑠𝑟𝑡1 → 𝑠𝑟𝑡2 →
...→ 𝑠𝑟𝑡𝑛 . For each list 𝑅, we use the emptynode() function

to create a new empty object 𝑒 with its corresponding SRT

node𝑛𝑜𝑑𝑒𝑒 (line #21) and add𝑛𝑜𝑑𝑒𝑒 in the tree set 𝑆 (line #26).

For each SRT node𝑛𝑜𝑑𝑒𝑟 in the ordered list𝑅, we first remove

it from the tree set 𝑆 (line #23) and then create a containment

relationship between 𝑛𝑜𝑑𝑒𝑒 and 𝑛𝑜𝑑𝑒𝑟 (line #24).

We should note that the interface functions, i.e., parseObj()
and getContainedObj(), highlighted inAlgorithm 1, should

be implemented specifically to support the target infrastruc-

ture code’s programing paradigm. Furthermore, the getCont-
ainedObj() function must guarantee that its returned val-

ues/objects are sequentially ordered—the leftmost executes

earliest
2
. In such way, the sequential order is preserved

among all the leaves in an SRT from left to right. The detailed

implementation of the two functions will be discussed in Sec-

tion 3. The other functions, including queue(), enqueue(),
dequeue(), order(), emptynode() are commonly used li-

brary functions. We do not explicitly describe their imple-

mentation details due to page limit.

2.4 Script Detection and Composition
Script invocation in infrastructure code. Modern IaC

platforms provide their own programming paradigm, syn-

tax and libraries to support script invocations. For exam-

ple, Ansible supports Shell/PowerShell script invocations

in YAML playbooks using the following Ansible modules:

command, shell, script, raw, install, before_install,
win_command, and win_shell. Chef supports Shell/PowerShell
script invocations in Ruby cookbooks using the following

Chef resources: execute, script, powershell_script, bash,

1
The ordered lists are provided by user-specific inputs or pre-requisites,

defined in the Readme file.

2
It is the implementation version of SRT’s top-down sequential order.

csh, and ksh. Puppet supports Shell/PowerShell script in-
vocations in DSL files using the Puppet exec resource. Ter-
raform supports Shell/PowerShell script invocations in TF

files using the local-exec and remote-exec provisioners.
Script detection. To detect whether the infrastructure

code invokes scripts, we traverse the generated SRTs, ob-

tain their leaf nodes, and check whether the operation leaf

nodes use the aforementioned script-related IaC libraries,

e.g., Ansible modules, Chef resources, Puppet resources, and

Terraform provisioners. As shown in Algorithm 2, our script

detection module provides the hasScript() interface func-

tion (line #8) to check the existence of scripts in SRTs.

After detecting that the operation nodes involve the script

invocation, simply dumping raw scripts from the operation

nodes using the extractScript() interface function (line

#9) is not enough, due to the template rendering in modern

IaC platforms. Those raw scripts can be embedded with tem-

plated variables in Jinja2, Django, JSP, PHP, etc. To achieve

accurate and modularized script checking, we need to have

interfaces to compose the scripts in correct scripting lan-

guage syntax and format, before passing them to the script-

analyzers.

Variable map. In infrastructure code, variables are ei-

ther configured in configuration files or defined by run-time

jobs’ execution results. The statically configured variables

are in an SRT’s variable leaf nodes associated with default

values, while the dynamically assigned variables are in an

SRT’s operation leaf nodes associated with specific opera-

tions. Our system provides the extractVar() function to

extract variable-value pairs from all variable leaf nodes and

append them in the variable map 𝑀 . The variable map is

updated in-time—it is updated at the beginning of each loop

iteration (line #6)—to guarantee the define-reference order

in two aspects:

First, the variable map contains the configured variables’

values, which can be retrieved and referenced in the later

script composition. The sequential order in SRT generation

makes sure that variable nodes are on the left side of opera-

tion nodes in the same component. Thus, the variable nodes

have higher priority to be processed earlier.

Second, a dynamically defined variable in an operation

node can only be referenced by the later operations. For

example, there are three operation nodes 𝑜𝑝1, 𝑜𝑝2, and 𝑜𝑝3
and leftmost executes earliest. If a variable 𝑣𝑎𝑟2 is defined in

𝑜𝑝2, the in-time updated variable map makes sure that 𝑣𝑎𝑟2
can be referenced in 𝑜𝑝3 but not in 𝑜𝑝1, when we compose

the scripts in those operations.

We should note that IaC tools handle lexically scope vari-

ables by overriding the old value with the new value globally,

which is supported by our variable map.

362

SoCC ’20, October 19–21, 2020, Virtual Event, USA Ting Dai, Alexei Karve, Grzegorz Koper, and Sai Zeng

Algorithm 2: script detection and composition

input :a set of SRTs 𝑆
output :a set of composed scripts𝐶

1 begin
2 for node𝑟 ∈ 𝑆 do ⊲ SRT root node

3 𝐿 ← ∅,𝑀 ← ∅
4 𝐿 ← getLeaves(node𝑟 , 𝐿)
5 for 𝑙 ∈ 𝐿 do
6 𝑀 ← 𝑀 ∪ extractVar (𝑙) ⊲ var map

7 if l.type = ’operation’ then ⊲ operation leaf node

8 if hasScript (𝑙) then
9 𝑐 ← extractScript (𝑙)

10 𝑐 ← composeScript(𝑐,𝑀)
11 𝐶 ← 𝐶 ∪ reformatTemplated (𝑐)

12 return𝐶

13 function getLeaves(node𝑟 , 𝐿)
14 if children[𝑟] = ∅ then ⊲ leaf node

15 return {node𝑟 }
16 for 𝑛 ∈ children[𝑟] do
17 𝐿 ← 𝐿 ∪ getLeaves(node𝑛, 𝐿) ⊲ union children’s leaves

18 return 𝐿

19 function composeScript(𝑐,𝑀)
20 𝑐′ ← 𝑐

21 𝑉 ← extract (𝑐) ⊲ extract the referenced variables

22 for 𝑣𝑎𝑟 ∈ 𝑉 do
23 if containsKey(𝑀, 𝑣𝑎𝑟) then
24 𝑣𝑎𝑙 ← get(𝑀, 𝑣𝑎𝑟)
25 𝑐 ← replace(𝑐, 𝑣𝑎𝑟, 𝑣𝑎𝑙)

26 if 𝑐 ≠ 𝑐′ then
27 return composeScript(𝑐,𝑀) ⊲ compose recursively

28 return 𝑐

Script composition. As shown in Algorithm 2, the script

composition (line #19-28) is a process of replacing a tem-

plated variable 𝑣𝑎𝑟 in raw scripts with its value 𝑣𝑎𝑙 extracted

from the variable map𝑀 . To handle cases with nested vari-

able references, our composeScript() function recursively

conducts the replacement (line #27) until all the referenced

variables are replaced by their defined values or until the

script cannot be further composed, i.e., the variable map𝑀

does not contain the value for a referenced variable.

For example, we have a raw shell script as rm -rf {{dir}},
where the {{dir}} variable is in Jinja2 format. The vari-

able map contains the key-value pairs as dir={{path}},
path='/'. We call the composeScript() function to extract

the dir variable (line #21), query the map (line #23), and

retrieve its value as path (line #24). We update the script by

replacing {{dir}}with {{path}} and get rm -rf {{path}}
(line #25). A recursive function call is invoked to check

whether the script can be further composed (line #27). After

a second-round of extraction, query, and replacement, the

script is updated as rm -rf /. This is the final composed

script, since there is no referenced variable embedded in it.

Templated variable reformat. The composed scripts

may still contain templated variables which are undefined

in the infrastructure code, i.e., the variable map𝑀 does not

contain the value for a referenced variable. Passing those

syntactically problematic scripts to script-analyzers results

in inaccuracy and false positives. To remove the templating

language from the composed scripts while still preserving

the variable reference, we use the reformatTemplated()
interface function (line #11) to reformat those templated

variables in correct script syntax.

We should note that the reformatTemplated() interface

function alongwith others, i.e., extractVar(), hasScript(),
extractScript(), and extract(), highlighted inAlgorithm 2,

should be implemented specifically for the target infrastruc-

ture code due to the corresponding programming paradigm.

The implementation details of these functions will be dis-

cussed in Section 3. Other functions, such as containsKey(),
get(), and replace() are commonly used library functions.

Their implementation is omitted in the paper.

2.5 Business Impact Categorization and
Severity Assignment

Our analysis system leverages the open-source state-of-the-

practice script-analyzers such as ShellCheck and PSScript-

Analyzer to conduct risky code checking on the composed

scripts. However, the issues reported by those script-analyzers

are generic. They label each issue with the type of “style”,

“info”, “warning”, or “error” without clearly showcasing the

potential business impacts of those issues and how severe

those impacts are, when the reported issues’ risky behaviors

manifest in the production environment. To satisfy business

compliance requirements, our analysis system regulates the

identified issues with impact categorization and severity as-

signment.

We conduct an empirical study on the existing script-

analyzers’ rulesets, including 345 rules from ShellCheck and

64 rules from PSScriptAnalyzer. We study the code patterns

checked by each rule to identify what risky behaviors and

consequent negative impacts the problematic code can have.

We categorize the issues based on the potential impacts as

“none” issues, “security” vulnerabilities, “availability” issues,

“performance” issues or “reliability” issues. For each category

of risky code, we assign severity levels accordingly.

None risky behavior. For the problems labeled as “style”

by the script-analyzers, they usually do not have risky be-

haviors. We mark their impacts as “none” and assign their

severity levels as “low”. For example, ShellCheck considers

that the shell command echo $(cat foo.txt) has a style

363

Automatically Detecting Risky Scripts in Infrastructure Code SoCC ’20, October 19–21, 2020, Virtual Event, USA

issue, wherein echo is useless. This command does not have

any risky behavior
3
but a simplified version is preferred, i.e.,

cat foo.txt.
Security. For the issues which contain security vulnerabil-

ities, we assign their severity levels as “high”, based on IBM

business security requirements [6, 18]. For example, in the

shell command find . -name '*.txt' -exec sh -c 'echo
"{}"' \;, the filename is passed in by an injected shell string

(i.e., "{}"). Any shell meta-characters in the filename can be

interpreted as part of the script, which allows arbitrary code

execution exploitation.

Availability. For the issues which can cause the system

to be unavailable, leading to potential service outages [11],

we assign their severity levels as “high”. For example, the

shell command rm -rf / deletes the whole system direc-

tory, which severely impacts system availability, causing

catastrophic consequences.

Performance. For the issues which degrade system per-

formance, we assign their severity levels as “medium”. For ex-

ample, the shell command if ["$(find . | grep 'IMG[0-9]'
)"] iterates the entire directory and reads all matching lines

into memory before making a decision rather than stop-

ping at the first matching line. It prolongs the infrastructure

code execution, which can decrease system performance.

When a performance issue involves abnormally high CPU

or memory usage, such as an infinite loop, it can signifi-

cantly impact the whole system, making the system become

partially or entirely unavailable. However, without runtime

information and specific user input, we currently cannot

decide whether the risky code has performance issues or

performance-induced availability issues.

Reliability. For the issues which make the scripts’ output

become unreliable, further affecting infrastructure life-cycle

operations, we measure them from a context specific per-

spective. Specifically, we extract the infrastructure operation

criticality from operation names, automation file names, and

comments. We classify the operations as “critical” if they

are related to reboot, restart, update, backup, database, ser-

vice, etc. We classify the operations as “moderate” if they are

related to file read/write, word count, logs, etc. The other op-

erations are considered as “trivial”, such as printing messages

on a terminal. For the unreliable scripts which are related to

the infrastructure critical, moderate, or trivial operations, we

consider their severity levels as “high”, “medium”, or “low”,

respectively. For example, the shell command ps ax | grep
python is unreliable. It not only searches python processes

but also tries to match against other fields, such as if the

user’s name was pythonguru. When the command’s output

3
It might cause a millisecond overhead with negligible performance degra-

dation.

is used in a subsequent reboot operation, all the processes

created by the pythonguru user get restarted, affecting all

the running workloads. Thus, this unreliable script’s severity

level should be assigned as high. However, when this shell

command’s output is not used or simplify printed on a termi-

nal, this unreliable script’s severity level should be assigned

as low.

We generate a configurable knowledge-base to store the

impact and severity information for each rule. Each rule

has an ID in the format of analyzer-abbreviation and digit

numbers. For the ShellCheck rules, their IDs are in the range

of SC1000-SC9999, while for the PSScriptAnalyzer rules, their

IDs are in the range of PS1000-PS9999. Our knowledge-base

also contains short and detailed rule descriptions associated

with each rule ID. A short description is amessage containing

both pattern and impact information to briefly summarize the

risky code. A detailed discussion with examples and specific

scenarios are explained in a description file. We should note

that, the knowledge-base is configurable—users can easily

turn on/off a rule or adjust a rule’s severity level. In our

evaluation, we include all the rules from the knowledge-base

with the severity levels assigned by our emperical study

results.

2.6 Output Format with Line Mapping
Our analysis system provides a user-friendly output for each

detected issue, including 1 a rule ID, 2 an issue type inher-

ited from the script-analyzers, 3 a severity level, 4 the

potential business impact, 5 a short description for the

matched rule, 6 a file link for the rule’s detailed descriptions,

7 the content of the original risky script with optional tem-

plate rendering, 8 the content of the composed risky script,

and 9 the source code file path with 10 the line number

where the risky script reside. Example output is discussed in

Section 4.1.

The above first six fields can be retrieved from the knowledge-

base. The original and composed risky code contents can

be derived from our script composition module. The source

code file path can be obtained from the _file_ attribute in
the operation SRT node where the script is invoked. The

risky script line number can be obtained from the following

formula “𝐿 = 𝐿0 + 𝑖 − 1 ”, where 𝐿0 is the line number of

the embedded scripts stored in the _line_ attribute of the
SRT node; 𝑖 is the line number of the risky code reported by

script-analyzers in the composed script.

3 IMPLEMENTATION
We come up with a real-world solution, i.e., SecureCode, us-

ing our analysis platform to identify the risky scripts in An-

sible infrastructure code, i.e., Ansible playbooks. To support

the programming paradigm in Ansible playbooks, which are

364

SoCC ’20, October 19–21, 2020, Virtual Event, USA Ting Dai, Alexei Karve, Grzegorz Koper, and Sai Zeng

written in YAML with Jinja2 template rendering, we propose

our own template parser as well as reusing parsing func-

tions in the Ansible-lint [13] tool to implement SecureCode,

especially for implementing the interface functions in Sec-

tion 2, including the parseObj() and getContainedObj()
functions in Algorithm 1, the extractVar(), hasScript(),
extractScript(), reformatTemplated(), and extra -ct()
functions in Algorithm 2.

3.1 SRT Construction Implementation
In Ansible, a playbook represents an automation procedure.

A playbook contains different roles as the SRT entry node

contains multiple components. A role contains vars, defaults,
and tasks directories as a component node contains different

unit nodes. Variables are configured in the vars and defaults
directories while the business logic is represented by the

operations defined in the tasks directory.
Our parseObj() function’s implementation takes the struc-

tured directory of Ansible playbooks into consideration, and

creates the SRT entry nodes, component nodes and unit

nodes accordingly. To create SRT variable nodes and opera-

tion nodes, we parse YAMLfiles via the parse_yaml_linenu-
mbers() function from Ansible-lint, and extract operation

invocation statements and variable configuration statements.

We implement the getContainedObj(c) function to ex-

tract the containment relationships among Ansible play-

books, roles, variables, and operations in two ways. If the

automation object c is a folder (e.g., the root directory, the
roles directory and the tasks directory), the contained objects
are all the files and subdirectories in this folder. Particu-

larly, when the automation object c is the roles directory, the
getContainedObj(c) function returns defaults, vars, and
tasks in order, to make sure that the variable nodes are on

the left side of operations nodes in an SRT. If the automa-

tion object c is a file (e.g., a main.yml file in the tasks di-
rectory), we extract all the contained objects by this file via

the play_children() function from Ansible-lint. For exam-

ple, if the main.yml file includes the before.yml file, then we

extract before.yml as the contained object by main.yml.

3.2 Script Detection and Composition
Implementation

In Ansible, every operation is conducted by specific Ansi-

ble modules or user-specified plugins. An Ansible opera-

tion is represented by a module-parameter pair or a plugin-
parameter pair. For example, in the operation of "shell:
cat {{fp}}.txt", shell is an Ansible module to execute

shell commands while cat {{fp}}.txt is the command con-

tent to be executed.

We implement the hasScript() function to detect scripts

by checking whether the module-parameter pairs in SRT

operation nodes are script related. The script-related Ansible

modules include the command, shell, script, raw, install,
before_install, win_command, and win_shell modules.

Our extractScript() function then retrieves the parame-

ter content from the script-related module-parameter pairs

as the raw scripts. Currently, SecureCode does not check

user customized script plugins during script detection and

extraction, based on two reasons. First, the script-related

modules provided by Ansible are abundant for users to exe-

cute Shell or PowerShell commands in infrastructure code.

Second, user-specified shell plugins are not guaranteed to be

compatible with state-of-the-practice script analyzers.

In Ansible, a statically configured variable is represented

by a variable-value pair while the dynamically defined vari-

able is represented by a variable-operation pair. We imple-

ment the extractVar() function to extract both static and

dynamic variables. Specifically, the static variable-value pairs

extracted from the variable nodes can be directly appended

into the variablemap𝑀 . As for the dynamic variable-operation

pairs extracted from the operation nodes, we retrieve the

variable’s value based on the module type in the operation. If

the operation contains script-related modules, such as shell,
win_shell, we retrieve the command content in this opera-

tion as the variable’s value. Otherwise, we simply assign a

default value to this variable. In the current implementation,

SecureCode does not understand all the Ansible modules,

thus it cannot transform those script-unrelated operations

into scripting languages.

Ansible uses Jinja2 template rendering to enable dynamic

expression and access to variables. Those templated vari-

ables can be embedded in the raw scripts. We implement the

extract() function with a template parser to extract the

Jinja2 variables from the raw scripts during script composi-

tion. Our template parser contains a set of regular expres-

sions for different matching and extraction purposes.

We first check whether the Jinja2 variables contain com-

plex structures, i.e., filters and concatenations. We convert

them into multiple simple ones via a set of well-designed

regexes. For example, we convert {{(disk _image.path
| dirname) + '/' + disk_name}} into {{disk_image}}/
{{disk_name}}. Those simplified Jinja2 variables only con-

tain letters, numbers, and the underscore symbol, surrounded

by double braces, i.e., {{}}.
Then, the extract() function can get a list of template-

free variables by removing the surrounding double braces in

the simplified Jinja2 variables, e.g., disk_images, disk_name.
We implement the reformatTemplated() function to check

whether the composed script still contains templated vari-

ables and reformat them in scripting language. Specifically,

we use the "{{[0-9A-Za-z_.{}] *}}" regex to search the

composed script and replace the double braces with the dollar

symbol. For example, if the {{file}} variable is not defined

365

Automatically Detecting Risky Scripts in Infrastructure Code SoCC ’20, October 19–21, 2020, Virtual Event, USA

VM
images

Infrastructure
code repo

Travis listener

Github

Msg queue

2

4
Main

Travis DB

Travis
scheduler

Msg queue

Travis
gatekeeper

Travis logs

Travis web

Log DB

Travis
worker

Travis
build

1

3

6

58

7

10 11

12 13

9

1415

.travis.yml

SecureCode
pkgs

Figure 4: Travis flow. The .travis.yml file contains a
Travis job configuration, including SecureCode’s pre-
installation, installation and execution steps.

in the infrastructure code but still referenced in the shell

script cat {{file}}, the reformatTemplated() function

generates a syntactically correct script variable "$file" to
replace {{file}} and updates the script as cat "$file".

4 EVALUATION
We implement SecureCode in Python language, using pars-

ing functions in Ansible-lint v4.2.0, Shell script analyzer

ShellCheck v0.7.0, and PowerShell script analyzer PSScript-

Analyzer v1.18.3. We push SecureCode in IBM’s enterprise

github, integrate it with DevOp pipeline deployed in IBM

Services using Travis CI [20], shown by Figure 4. We test Se-

cureCode in 45 IBM Services community github repositories

in the Call-for-Automation (C4A) contest hosted by the IBM

Continuous Engineering team.

For each github repository, we create a Travis job to con-

duct SecureCode’s checking on the automation files with

the extension of .yml, .yaml, .sh, and .ps1, in the master

branch. A Travis job is defined by the .travis.yml con-

figuration file, which contains three steps: pre-installation,

installation, and a running command to invoke SecureCode.

In our experiments, all Travis jobs are running on a Ubuntu

v16.04.5 VM with kernel v4.19.52, provisioned on IBM Cloud.

4.1 Output and Case Study
As shown by Figure 4, every target Github repository is as-

sociated with a webhook, i.e., Travis listener. With each new

Github commit, SecureCode is invoked to check the reposi-

tory code in a VM (Step 1 to 9). After SecureCode finishes

checking, the checking status returns to the corresponding

Github commit (Step 10 to 15). If SecureCode identifies an

C4A-2019/c4a-leonian-c4a-backup-missed Private

Branch: master

Code Issues 0 Pull requests 0 Insights Settings

Create .travis.yml
Ting-Dai committed on Mar 2

Commits on Mar 2, 2020

All checks have failed
1 failing check

continuous-integration/travis-ci/push Details

07f550f

Figure 5: SecureCode’s checking status for the Github
commits. To view SecureCode’s output, click on “De-
tails”.

ID: SC2154 Type: Warning Impact: Security Severity: High
Description: unassigned ansible_node is vulnerable to injection attacks.
Detailed description: file:///localpath/SecureCode/rules/SC2154.md

https://remotepath/SecureCode/rules/SC2154.md
Location: roles/backup_missed_unix/tasks/main.yml:24
Original: shell {{ tsm_command }} "select count(*) from sessions where

client={{ ansible_node }}"
Composed: shell dsmadmc -se=${tsm_servername} -

id=${param_tsmuser} -pass=${param_tsmpass} -tabdelimited -dataonly=yes -
noconfirm "select count(*) from sessions where client_name=${ansible_node}"

Figure 6: A snippet of SecureCode’s detection report
presented in Travis web GUI.

issue, the commit is associated with a red cross mark (other-

wise a green check mark), shown by Figure 5. The developer

can click on “details” to see SecureCode’s detection reports.

Figure 6 shows the output of one of the detected issues

by SecureCode. The risky code happens at line #24 in the

main.yml file, where a shell script is invoked. The origi-

nal shell script contains Jinja2 template rendering variables,

i.e., {{tsm_command}} and {{ansible_node}}. SecureCode
conducts script composition by replacing {{tsm_command}}
with its configured value extracted from the variable map,

and then reformats the composed script by replacing dou-

ble braces with the dollar symbol for those undefined Jinja2

variables, e.g., {{ansible_node}}. The risky pattern of un-

defined variables matches ShellCheck’s Rule #2154 with the

type of warning. SecureCode reports this issue containing

security vulnerabilities with severity level as high based on

our business compliances in the risky code knowledge-base.

The statically unconfigured ansible_node variable allows
a user to pass any value from a command line when he/she

executes the corresponding Ansible playbooks. Without run-

time sanity checking, an unexperienced user may falsely

366

SoCC ’20, October 19–21, 2020, Virtual Event, USA Ting Dai, Alexei Karve, Grzegorz Koper, and Sai Zeng

pass wrong values to the infrastructure code. Even worse,

a malicious user can inject untrusted inputs to the infras-

tructure, compromising the system and stealing confidential

informations. In this example, ansible_node is used in a

SQL command, which is vulnerable to SQL injection attacks.

SecureCode also provides detailed descriptions about this

issue with local file address and remote wiki page.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0

1188
9
2
2
2
1
284
0
61
12
9
34
0
38
1
9
0
1
9
7
6
0
3
3
0
3
2
0
0
1
1
0
1

SC1017
SC2034
SC2196
SC1083
SC2006
SC1091
SC2181
SC1018
SC1003
SC1001
SC1010
SC2012
SC1090
PS1012
SC1072
PS1013
SC1087
SC2242
SC2152
SC1130
SC2185
SC2081
SC2002
SC2001
PS1023
SC2004
SC2126
SC2129
SC2116
SC2154
SC2164
SC2115
SC2153
PS1017
PS1018
SC2086
SC2140
SC2009
SC2230
SC2013
SC2155
SC2044
SC2031
SC2027
SC2046
SC2045
SC2162
SC2030
SC2010
SC2021
SC2068
SC2016
SC2053
SC2124
SC2145
SC2015
SC2038
SC2035
SC2166
SC2206
SC2043
PS1035

N
on
-r
is
k

Av
ai
la

bi
lit
y

Pe
rf
or
m
an
ce

Se
cu
rit
y

Re
lia
bi
lit
y

High
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
29
8
5
4
3
1
1
0
0
0
0
0
0

121
0
3
33
34
0
40
0
0
1
14
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0

Medium
372

178
88
45
33
31
30
13
11
10
8
8
6
6
5
5
4
4
3
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
87

386
54
0
0
6
0
1
0
8
0
13
1
2
0
4
0
0
3
0
0
2
1
0
0
0
0

Low

Figure 7: The statistics of identified issues with corre-
sponding rules in each impact category with different
severity levels. The y-axis represents a rule ID while
the x-axis is the number of matched issues for a rule.

4.2 Detection Accuracy and Statistics
SecureCode identifies 3535 issues in total from the 45 repos-

itories which contain 1492 automation files. We manually

investigate all issues and filter out the false positives, which

are 1) either falsely matched the code patterns by the cor-

responding rules in ShellCheck or PSScriptAnalyzer, 2) or

misinterpreted by SecureCode’s script composition module.

SecureCode’s detection is accurate with 116 out of 3535 is-

sues as false positives.

The statistics of the 3419 true issues are shown in Figure 7.

The number of matched issues for each rule varies drastically.

Some rules such as SC2140, SC2086, SC2154, and SC1017

have the highest matched numbers, because their risky code

patterns are related to common mistakes users make. We

also have observed that one repository can have hundreds

lines of code with the same risky pattern. It implies that

users especially system administrators have strong coding

personalities leading to the same mistakes [7]. We should

notice that, there are fewer PowerShell scripts than Shell

scripts in our benchmarks; thus the PSScriptAnalyzer rules

match fewer issues than the ShellCheck rules, in general.

There are 1204 security issues, 485 reliability issues, and

2 availability issues having the high severity level. Partic-

ularity, the Rule SC2154 and SC2086 match most of them.

The Rule SC2154 is that unassigned variable is vulnerable

to injection attacks, with example discussed in Section 4.1.

The Rule SC2086 is that unquoted variable/command causes

globbing and word splitting, resulting in unreliable outputs.

When those unreliable outputs are used in system critical

operations, such as reboot, stop and install, they put the

whole system in an unstable state with the potential service

downtime or even outage.

SecureCode identifies 247 and 51 medium severity level

issues which are related system reliability and performance,

respectively. Among all the 298 medium severe issues, the

Rule SC2086 match most of them when the corresponding

scripts are conducting non-critical operations consuming

moderate computation resources, e.g., logging in a loop. It is

challenging for SecureCode to differentiate whether a loop

can become infinite without specific inputs in a runtime en-

vironment. Thus, for all the loop-related issues, we currently

mark their severity levels as medium.

SecureCode identifies 1430 issues with low severity level.

They 1) either have none risky behaviors, such as Rule SC2034

(i.e., unused variable) and Rule PS1012 (i.e., lines end with

whitespace), 2) or are related to trivial operations such as

simply printing messages on a terminal.

Baseline comparison.We conduct a comparison experi-

ment by running vanilla Ansible-lint, ShellCheck and PSS-

criptAnalyzer on the same 45 github repositories as Secure-

Code. To satisfy language capability in order to get valid

367

Automatically Detecting Risky Scripts in Infrastructure Code SoCC ’20, October 19–21, 2020, Virtual Event, USA

checking results, we run Ansible-lint on all the automation

files with the .yml and .yaml extensions, ShellCheck on all

the .sh automation files, and PSScriptAnalyzer on all the

.ps1 automation files. Among all the 3535 issues in the 45

repositories detected by SecureCode, 1718 can be detected

by ShellCheck and 20 can be detected by PSScriptAnalyzer.

The remaining 1797 issues are caused by scripts invoked

inside .yml and .yaml files, which can only be detected by

SecureCode. We observe that Ansible-lint can barely detect

any script-related issues when they are invoked in different

Ansible modules. This is because Ansible-lint is specifically

designed to check the formats and best practices of YAML

language. As for ShellCheck and PSScriptAnalyzer, they can

detect all the issues in .sh and .ps1 files as SecureCode,

which is expected. This is because, unlike Shell and Power-

shell scripts invoked in the .yml and .yaml files, the automa-

tion procedures listed in the .sh and .ps1 files do not require
SecureCode’s script detection and composition. SecureCode

leverages ShellCheck and PSScriptAnalyzer to conduct script

checking, thus the 1718 issues in the .sh files can be detected
by both ShellCheck and SecureCode while the 20 issues in

the .ps1 files can be detected by both PSScriptAnalyzer and

SecureCode.

4.3 Preparation and Detection Time
Preparation time. Before conducting detection on the tar-

get github repositories, SecureCode has a preparation stage,

including pre-installation and installation. Figure 8 shows

SecureCode’s preparation time in each Travis job. Secure-

Code’s average preparation time is 136 seconds, including

85 seconds of pre-installation and 51 seconds of installation.

SecureCode’s preparation time does not include all the

latencies from when a new Travis job is created to when the

job starts to execute (Step 1 to 7 in Figure 4), including

queuing delays, scheduling delays, database read/write de-

lays, etc. It also does not contain the environment building

delay, which refers to the time of launching a VM with de-

fault environment setups [21], such as installing python and

git (Step 8 in Figure 4). Travis is running in parallel, the

aforementioned latencies (or delays) heavily depend on the

workloads and are easily affected by network connections.

We focus on evaluate the execution time of SecureCode not

the latency of the Travis system. Thus, we do not include

those delays in our evaluation.

Pre-installation time. SecureCode’s average pre-installation
time is 85 seconds, with 27 out of 45 Travis jobs pre-installed

in 106.50 ± 5.06 seconds and 18 out of 45 jobs pre-installed in
51.54 ± 2.35 seconds. Among all the pre-installation steps, in-

stalling PSScripAnalyzer on PowerShell Core consumes the

majority (i.e. 54%) of the time on average. The consumption

time of this step is also highly fluctuant with the standard

deviation of 27.01, which may caused by the compatibility

of using Microsoft products on the Linux system.

Installation time. Triggering SecureCode’s installation
is easy by operating the pip install git+https command.

The pip package manager then automatically generates the

setup scripts, i.e., setup.py from SecureCode’s setup.cfg
file which contains the default setup configurations and com-

mands to build a distribution. It takes the Travis VM 50.63

± 5.37 seconds on average to install SecureCode, shown in

Figure 8.

Detection time. Figure 9 shows SecureCode’s detection
time and lines of code (LOC) in each repository. In most

cases, the detection time is proportional to the LOC with

about 1 second spent on analyzing 80 LOC. However, in some

repositories, such as 𝑅𝑒𝑝𝑜3, 𝑅𝑒𝑝𝑜9, 𝑅𝑒𝑝𝑜15, 𝑅𝑒𝑝𝑜18, 𝑅𝑒𝑝𝑜25,

and 𝑅𝑒𝑝𝑜37, the ratio of detection time to LOC is much lower

than others. This is because SecureCode’s detection time

is not only related to LOC, but also related to the amount

of script invocations and the complexity of script composi-

tion in each repository. We observe that in 𝑅𝑒𝑝𝑜3, 𝑅𝑒𝑝𝑜15,

and 𝑅𝑒𝑝𝑜18, there are fewer script invocations even they

have a large number of LOC. Meanwhile, in 𝑅𝑒𝑝𝑜9, 𝑅𝑒𝑝𝑜25,

and 𝑅𝑒𝑝𝑜37, they invoke simple scripts which do not require

SecureCode’s comprehensive composition step. On the con-

trary, for repositories containing complicated script invoca-

tions, such as 𝑅𝑒𝑝𝑜12 and 𝑅𝑒𝑝𝑜44, SecureCode spends more

time on script composition; thus the ratio of detection time

to LOC in these repositories is higher than others.

4.4 Coding Skill Variation
We use both 1) the number of detected issues and 2) the

number of detected issues per LOC (i.e., 𝑖𝑝𝑙 ratio) to evalu-

ate the code quality of each tested repository. As shown in

Figure 10, the issue numbers and 𝑖𝑝𝑙 ratios tend to fluctuate

utterly, ranging from 0 to 1414, and 0 to 0.45, respectively.

The average and median issue numbers are 79 and 6; while

the average and median 𝑖𝑝𝑙 ratios are 0.04 and 0.01. Reposi-

tories have more (severe) issues or higher 𝑖𝑝𝑙 ratios tend to

have lower quality of code. For example, 𝑅𝑒𝑝𝑜1 and 𝑅𝑒𝑝𝑜34
are considered to have lower code quality with a large num-

ber of issues (545 and 1414, respectively,≫ 79 > 6) and higher

𝑖𝑝𝑙 ratios (0.36 and 0.29, respectively,≫ 0.04 > 0.01). We also

observe that most of issues in these repositories have high

or medium severity levels. Another examples are 𝑅𝑒𝑝𝑜2 and

𝑅𝑒𝑝𝑜9. They have lower code quality with large numbers of

issues (691 and 285, respectively,≫ 79 > 6), among which

most have high severity levels, even with average 𝑖𝑝𝑙 ratios,

i.e., 0.04. On the contrary, repositories have less (severe) is-

sues and lower 𝑖𝑝𝑙 ratios tend to have higher quality of code,

e.g., 𝑅𝑒𝑝𝑜11, 𝑅𝑒𝑝𝑜14, 𝑅𝑒𝑝𝑜16.

368

SoCC ’20, October 19–21, 2020, Virtual Event, USA Ting Dai, Alexei Karve, Grzegorz Koper, and Sai Zeng

60
30
0

30
60
90

120
150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Ti
m

e
(s

)

Repository

Pre-install time per repo Install time per repo Average pre-install time Average install time

Figure 8: SecureCode’s pre-installation and installation time.

0
4
8
12
16
20

0
50

100
150
200
250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Lines (K
)T

im
e

(s
)

Repository

Detection time LOC

Figure 9: SecureCode’s detection time and LOC in each repository.

0
0.1
0.2
0.3
0.4
0.5
0.6

1
5

25
125
625

3125
15625

11 14 16 19 20 22 26 27 28 29 31 36 39 41 43 18 15 42 13 37 30 35 45 3 5 44 23 38 25 12 8 10 2 9 6 24 7 33 17 32 4 40 34 1 21

Ratio
Is

su
es

 o
r

lin
es

Repository

LOC Number of issues Number of issues per line

Figure 10: LOC, the number of detected issues, and their ratios in each repository. The ratios are in an ascending
order.

The variation of code qualities are caused by different

development experience, coding practice, and scripting lan-

guage expertise. Especially for the C4A contest, not all par-

ticipants are fully trained, nor are they full-time dedicated

on the project for the contest. SecureCode analyzes the sub-

mitted infrastructure code and checks whether they contain

risky patterns on script invocations. However, judging the

submitted code based on SecureCode’s detection results is far

from enough. Moreover, we never depreciate those reposito-

ries with large number of detected issues. They may propose

new features and solutions to the Ansible infrastructure,

which can be widely used and adopted in future after some

refinement and refactoring.

4.5 User Experience

4
Manual checking means checking the Ansible-embedded Shell/Powershell

scripts manually without any tool.

5
Users can compose their own Shell scripts from Ansible playbooks and

then run those composed scripts using ShellCheck.

We have designed quantified metrics to access the user ex-

perience from IBM Continuous Engineering team by com-

paring SecureCode with manual checking
4
, ShellCheck

5

and PSScriptAnalayzer
6
in terms of throughput improve-

ment (i.e., LOCs reviewed per person per day) and efficiency

improvement (i.e., number of issues to be identified). The

pre-production pilot of SecureCode comes backwith the feed-

back that SecureCode achieves an estimated 5x throughput

improvement comparedwithmanual check, 2x to 5x through-

put improvement compared with ShellCheck, and 2x to 3x

throughput improvement compared with PSScriptAnalzyer.

SecureCode can identify issues which were overlooked by de-

velopers. Specifically, SecureCode can identify 5xmore issues

than manual check, 2x to 3x more issues than ShellCheck,

and 2x to 3x more issues than PSScriptAnalyzer. This user

experience matches our baseline comparison results, which

showing that SecureCode removes the bottleneck of code

governance/review and shortens the time to market.

6
Users can compose their own Powershell scripts from Ansible playbooks

and then run those composed scripts using PSScriptAnalyzer.

369

Automatically Detecting Risky Scripts in Infrastructure Code SoCC ’20, October 19–21, 2020, Virtual Event, USA

5 FUTUREWORK
In this work, we take a first step towards the direction by

identifying risky scripts in infrastructure code. The funda-

mental idea is to bridge the gap between generic state-of-the-

practice script-analyzers and business compliances when

detecting risky patterns with correlated potential negative

consequences in the business infrastructure environment.

SecureCode is a roadmap in this journey. Additional fea-

tures to be implemented are on our schedule, including sup-

porting more scripting languages, e.g., perl, python, and ruby,

and supporting checking infrastructure code in other IaC

tools, e.g., Chef cookbooks and Puppet manifests. To support

other scripting languages, we need to integrate correspond-

ing script analyzers into our system and one-time empirically

study on the out-of-the-box rulesets, e.g., Bandit [37] for

Python. To support other IaC tools, specific implementations

on the interface functions in Algorithm 1 and Algorithm 2

are required. With the help of open-source libraries, e.g.,

puppet-strings [17], the implementation work is not a heavy

load.

Our knowledge-base has a good coverage on common

syntax and intermediate-level semantic bugs. In our pre-

production testing, we do not encounter any false negatives.

However, SecureCode cannot detect certain types of bugs,

e.g., dirty copy-on-write, and fork bomb. Thus, extending

the rulesets of SecureCode is also our future work.

6 RELATEDWORK
Infrastructure code analysis. Previous work has been ex-

tensively done to identify quality concerns in infrastructure

code [13, 15, 22, 40, 42]. Those quality analysis tools mainly

check style issues, e.g., complex expressions, long statements,

and unnamed tasks. However, these quality concerns mostly

do not cause risky behaviors manifested in the production

environment.

Many infrastructure code analysis approaches have been

proposed to identify security, availability and reliability is-

sues. SLIC [38] detects seven security smells in Puppet man-

ifests, including admin by default, hard-coded secret, suspi-

cious comments, etc. FSMoVe [41] identifies ordering viola-

tions and missing notifiers in Puppet programs, which can

cause the infrastructure become unavailable [3] or unreli-

able [39]. Model-based testing [26, 30] is proposed to detect

non-idempotent and non-convergent automations in Chef

recipes and Puppet manifests. Infrastructure code which

cannot idempotently converges to a desired state causes reli-

ability issues.

In comparison, our work checks the risky patterns (includ-

ing availability, reliability, security and performance issues)

in Shell and PowerShell scripts embedded in infrastructure

code. We believe our work is complementary to the existing

infrastructure code analysis approaches.

Shell and PowerShell script analysis. Recent work has
been done to identify bugs and security vulnerabilities in

Shell and PowerShell scripts. ABash [34] statically checks

common expansion bugs in bash scripts using taint tracking

and abstract interpretation. Shill [36] enforces the scripts’

access control to system resources via declarative security

policies and capability-based sandboxes. Machine Learning

based detectors [9, 10, 28] are proposed to detect malicious

PowerShell commands, using NLP, CNNs, and LSTM.

Different from existing Shell and PowerShell script check-

ing approaches, which either are specific to certain types

of bugs and vulnerabilities [34, 36] or require a large num-

ber of training data [9, 10, 28], our work leverages static

pattern-based script-checking tools, i.e., ShellCheck [29] and

PSScriptAnalyzer [35], to analyze infrastructure embedded

Shell and PowerShell scripts and correlates them with busi-

ness configurations and consequences.

7 CONCLUSION
Risky scripts in infrastructure code have widespread of neg-

ative business impacts, leading to disastrous consequences.

To identify the risky scripts which cause availability, reliabil-

ity, security and performance issues, we design an analysis

framework to abstract the structured representations from

infrastructure code before extracting and composing its em-

bedded Shell and PowerShell scripts. Our analysis framework

then leverages generic state-of-the-practice script analyzers,

ShellCheck and PSScriptAnalyzer, to conduct script checking,

and a configurable knowledge base to categorize business im-

pacts and assign severity levels for the identified issues. We

implement SecureCode based on our analysis framework to

check Ansible playbooks. We integrate SecureCode with the

DevOp pipeline deployed in IBM cloud and test SecureCode

on 45 IBM Services community repositories. Our evaluation

shows that SecureCode can identify 3419 true issues with

116 false positives, with the average pre-installation and in-

stallation time of 136 seconds, and average detection time of

1 second per 80 LOC. Among the identified 3419 true posi-

tives, 1691 have high severity levels which make the system

become unavailable, unreliable, or vulnerable to security at-

tacks. We also observe that the ratio of issue numbers to LOC

varies drastically in each repository, indicating the commu-

nity’s variegated development experience, coding practice,

and scripting language expertise.

REFERENCES
[1] 2012. Critical Cloud Computing: A CIIP perspective on cloud comput-

ing services. https://resilience.enisa.europa.eu/cloud-security-and-

resilience/publications/critical-cloud-computing

370

https://resilience.enisa.europa.eu/cloud-security-and-resilience/publications/critical-cloud-computing
https://resilience.enisa.europa.eu/cloud-security-and-resilience/publications/critical-cloud-computing

SoCC ’20, October 19–21, 2020, Virtual Event, USA Ting Dai, Alexei Karve, Grzegorz Koper, and Sai Zeng

[2] 2013. Human error most likely cause of datacentre downtime, finds
study. https://www.computerweekly.com/news/2240179651/Human-

error-most-likely-cause-of-datacentre-downtime-finds-study

[3] 2014. DNS Outage Post Mortem. https://github.blog/2014-01-18-dns-

outage-post-mortem/

[4] 2017. Amazon And The $150 Million Typo. https://www.npr.org/

sections/thetwo-way/2017/03/03/518322734/amazon-and-the-150-

million-typo

[5] 2017. AWS’s S3 outage was so bad Amazon couldn’t get into its own
dashboard to warn the world. https://www.theregister.co.uk/2017/03/

01/aws_s3_outage/

[6] 2017. Cyber Security Is A Business Risk, Not Just An IT Prob-
lem. https://www.forbes.com/sites/edelmantechnology/2017/10/11/

cyber-security-is-a-business-risk-not-just-an-it-problem

[7] 2017. The Main Difference Between Junior Programmers And Senior
Programmers. https://www.forbes.com/sites/quora/2017/12/05/the-

main-difference-between-junior-programmers-and-senior-

programmers/#724b335e67f3

[8] 2017. Summary of the Amazon S3 Service Disruption in the Northern
Virginia (US-EAST-1) Region. https://aws.amazon.com/message/41926/

[9] 2018. Malicious PowerShell Detection via Machine Learning.
https://www.fireeye.com/blog/threat-research/2018/07/malicious-

powershell-detection-via-machine-learning.html

[10] 2019. Deep learning rises: New methods for detecting malicious Pow-
erShell. https://www.microsoft.com/security/blog/2019/09/03/deep-

learning-rises-new-methods-for-detecting-malicious-powershell/

[11] 2019. A shell script that deleted a database, and how ShellCheck could
have helped. https://www.vidarholen.net/contents/blog/?p=746

[12] 2020. Ansible is Simple IT Automation. https://www.ansible.com/

[13] 2020. Ansible-lint: Best practices checker for Ansible. https://github.

com/ansible/ansible-lint/

[14] 2020. Chef: Deploy new code faster and more frequently. https://www.

chef.io/

[15] 2020. Puppet-lint: Check that your Puppet manifests conform to the style
guide. https://github.com/rodjek/puppet-lint

[16] 2020. Puppet: Powerful infrastructure automation and delivery. https:

//puppet.com/

[17] 2020. puppet-strings. https://rubygems.org/gems/puppet-strings

[18] 2020. Secure infrastructure from IBM lets you make sure your data
stays safe — wherever it goes. https://www.ibm.com/it-infrastructure/

solutions/security

[19] 2020. Terraform: Use Infrastructure as Code to provision and manage
any cloud, infrastructure, or service. https://www.terraform.io/

[20] 2020. Travis CI. https://travis-ci.org/

[21] 2020. The Xenial Build Environment. https://docs.travis-ci.com/user/

reference/xenial/

[22] 2020. YAML Lint: A linter for YAML files. https://github.com/

adrienverge/yamllint

[23] Ting Dai, Daniel Joseph Dean, Peipei Wang, Xiaohui Gu, and Shan Lu.

2019. Hytrace: A Hybrid Approach to Performance Bug Diagnosis in

Production Cloud Infrastructures. IEEE Trans. Parallel Distrib. Syst. 30,
1 (2019), 107–118.

[24] Ting Dai, Jingzhu He, Xiaohui Gu, Shan Lu, and Peipei Wang. 2018.

DScope: Detecting Real-World Data Corruption Hang Bugs in Cloud

Server Systems. In Proceedings of the ACM Symposium on Cloud Com-
puting (SoCC’18).

[25] Michael Greenberg and Austin J. Blatt. 2019. Executable Formal Seman-

tics for the POSIX Shell. Proc. ACM Program. Lang. 4, POPL, Article 43
(2019), 30 pages.

[26] Oliver Hanappi, Waldemar Hummer, and Schahram Dustdar. 2016. As-

serting Reliable Convergence for Configuration Management Scripts.

In Proceedings of the 2016 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’16).

[27] Jingzhu He, Ting Dai, and Xiaohui Gu. 2018. TScope: Automatic Time-

out Bug Identification for Server Systems. In 2018 IEEE International
Conference on Autonomic Computing, ICAC 2018, Trento, Italy, Septem-
ber 3-7, 2018. 1–10.

[28] Danny Hendler, Shay Kels, and Amir Rubin. 2018. Detecting Malicious

PowerShell Commands Using Deep Neural Networks. In Proceedings of
the 2018 on Asia Conference on Computer and Communications Security
(ASIACCS’18).

[29] Vidar Holen. 2020. ShellCheck – shell script analysis tool, infrastructure,
or service. https://www.shellcheck.net/

[30] Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar

Eilam. 2013. Testing Idempotence for Infrastructure as Code. In

ACM/IFIP International Middleware Conference (Middleware’13).
[31] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan

Padhye. 2019. Efficient Scalable Thread-Safety-Violation Detection:

Finding Thousands of Concurrency Bugs during Testing. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles (SOSP’19).

[32] Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming Zhang, Haryadi S.

Gunawi, Xiaohui Gu, Xicheng Lu, and Dongsheng Li. 2018. Pcatch: Au-

tomatically Detecting Performance Cascading Bugs in Cloud Systems.

In Proceedings of the Thirteenth EuroSys Conference (EuroSys’18).
[33] V. Benjamin Livshits andMonica S. Lam. 2005. Finding Security Vulner-

abilities in Java Applications with Static Analysis. In Proceedings of the
14th Conference on USENIX Security Symposium. USENIX Association,

USA.

[34] Karl Mazurak. 2007. ABash: Finding bugs in bash scripts. In In ACM
SIGPLAN Workshop on Programming Languages and Analysis for Secu-
rity (PLAS’07).

[35] Microsoft. 2020. PSScriptAnalyzer. https://github.com/PowerShell/

PSScriptAnalyzer

[36] Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong. 2014.

SHILL: A Secure Shell Scripting Language. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’14).

[37] PyCQA. 2020. Bandit is a tool designed to find common security issues
in Python code. https://github.com/PyCQA/bandit

[38] Akond Rahman, Chris Parnin, and Laurie Williams. 2019. The seven

sins: security smells in infrastructure as code scripts. In Proceedings of
the 41st International Conference on Software Engineering (ICSE’19).

[39] Rian Shambaugh, Aaron Weiss, and Arjun Guha. 2016. Rehearsal:

A Configuration Verification Tool for Puppet. In Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’16).

[40] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does

Your Configuration Code Smell?. In Proceedings of the 13th International
Conference on Mining Software Repositories (MSR’16).

[41] Thodoris Sotiropoulos, Dimitris Mitropoulos, and Diomidis Spinellis.

2020. Practical Fault Detection in Puppet Programs. In Proceedings of
the 42nd International Conference on Software Engineering (ICSE’20).

[42] E. van der Bent, J. Hage, J. Visser, and G. Gousios. 2018. How good is

your puppet? An empirically defined and validated quality model for

puppet. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER’18).

[43] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long

Jin, and Shankar Pasupathy. 2016. Early Detection of Configuration Er-

rors to Reduce Failure Damage. In Proceedings of the 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI’16).

[44] Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tack-

ling Configuration Errors: A Survey. ACM Comput. Surv. 47, 4, Article
70 (July 2015), 41 pages.

371

https://www.computerweekly.com/news/2240179651/Human-error-most-likely-cause-of-datacentre-downtime-finds-study
https://www.computerweekly.com/news/2240179651/Human-error-most-likely-cause-of-datacentre-downtime-finds-study
https://github.blog/2014-01-18-dns-outage-post-mortem/
https://github.blog/2014-01-18-dns-outage-post-mortem/
https://www.npr.org/sections/thetwo-way/2017/03/03/518322734/amazon-and-the-150-million-typo
https://www.npr.org/sections/thetwo-way/2017/03/03/518322734/amazon-and-the-150-million-typo
https://www.npr.org/sections/thetwo-way/2017/03/03/518322734/amazon-and-the-150-million-typo
https://www.theregister.co.uk/2017/03/01/aws_s3_outage/
https://www.theregister.co.uk/2017/03/01/aws_s3_outage/
https://www.forbes.com/sites/edelmantechnology/2017/10/11/cyber-security-is-a-business-risk-not-just-an-it-problem
https://www.forbes.com/sites/edelmantechnology/2017/10/11/cyber-security-is-a-business-risk-not-just-an-it-problem
https://www.forbes.com/sites/quora/2017/12/05/the-main-difference-between-junior-programmers-and-senior-programmers/#724b335e67f3
https://www.forbes.com/sites/quora/2017/12/05/the-main-difference-between-junior-programmers-and-senior-programmers/#724b335e67f3
https://www.forbes.com/sites/quora/2017/12/05/the-main-difference-between-junior-programmers-and-senior-programmers/#724b335e67f3
https://aws.amazon.com/message/41926/
https://www.fireeye.com/blog/threat-research/2018/07/malicious-powershell-detection-via-machine-learning.html
https://www.fireeye.com/blog/threat-research/2018/07/malicious-powershell-detection-via-machine-learning.html
https://www.microsoft.com/security/blog/2019/09/03/deep-learning-rises-new-methods-for-detecting-malicious-powershell/
https://www.microsoft.com/security/blog/2019/09/03/deep-learning-rises-new-methods-for-detecting-malicious-powershell/
https://www.vidarholen.net/contents/blog/?p=746
https://www.ansible.com/
https://github.com/ansible/ansible-lint/
https://github.com/ansible/ansible-lint/
https://www.chef.io/
https://www.chef.io/
https://github.com/rodjek/puppet-lint
https://puppet.com/
https://puppet.com/
https://rubygems.org/gems/puppet-strings
https://www.ibm.com/it-infrastructure/solutions/security
https://www.ibm.com/it-infrastructure/solutions/security
https://www.terraform.io/
https://travis-ci.org/
https://docs.travis-ci.com/user/reference/xenial/
https://docs.travis-ci.com/user/reference/xenial/
https://github.com/adrienverge/yamllint
https://github.com/adrienverge/yamllint
https://www.shellcheck.net/
https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PyCQA/bandit

	Abstract
	1 Introduction
	2 System Design
	2.1 Design Goal
	2.2 System Overview
	2.3 Structured Representation Tree Generation
	2.4 Script Detection and Composition
	2.5 Business Impact Categorization and Severity Assignment
	2.6 Output Format with Line Mapping

	3 Implementation
	3.1 SRT Construction Implementation
	3.2 Script Detection and Composition Implementation

	4 Evaluation
	4.1 Output and Case Study
	4.2 Detection Accuracy and Statistics
	4.3 Preparation and Detection Time
	4.4 Coding Skill Variation
	4.5 User Experience

	5 Future Work
	6 Related Work
	7 conclusion
	References

