Understanding Real-World Timeout Problems in Cloud Server Systems

Ting Dai, Jingzhu He, Xiaohui (Helen) Gu, Shan Lu*

NC State University *University of Chicago
Real-world timeout problems

Amazon DynamoDB service was down for 5 hours.
https://aws.amazon.com/cn/message/5467D2/

Storage servers

Metadata server

No proper limit of retry.

Overloaded

Timeout Timeout Timeout

Send req 1

Send req 2

Bug

Send req 3

...
A Motivating Example

HDFS-6166

Timeout
1 min

Balancer

Send job req 1
Send job req 2
Send job req 3

DataNode 1

Move data block

DataNode 2

Thread quota exceeded error

Misconfigured timeout value
A Motivating Example

HDFS - 6166

Balancer
DataNode 1
DataNode 2

Send job req 1
Move data block

Send job response 1

1 min
20 min

patch
What are timeout bugs?

Timeout bugs happen when the server applications lack proper **configuration** and **handling** of the timeout events.
Why are timeout bugs prevalent?

• Cloud server systems have become increasingly complex.
• Timeout is one of the commonly used mechanisms to handle unexpected failures in distributed computing environments.
Methodology

• We searched timeout bugs in 11 popular cloud server applications from Apache JIRA.

• We extensively studied 156 bugs.

<table>
<thead>
<tr>
<th>System</th>
<th># of bugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassandra</td>
<td>17</td>
</tr>
<tr>
<td>Flume</td>
<td>13</td>
</tr>
<tr>
<td>Hadoop Common</td>
<td>15</td>
</tr>
<tr>
<td>Hadoop Mapreduce</td>
<td>15</td>
</tr>
<tr>
<td>Hadoop Yarn</td>
<td>4</td>
</tr>
<tr>
<td>HDFS</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th># of bugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBase</td>
<td>28</td>
</tr>
<tr>
<td>Phoenix</td>
<td>6</td>
</tr>
<tr>
<td>Qpid</td>
<td>20</td>
</tr>
<tr>
<td>Spark</td>
<td>4</td>
</tr>
<tr>
<td>Zookeeper</td>
<td>8</td>
</tr>
</tbody>
</table>

Total 156
Methodology

We classified the 156 timeout bugs in regard to three characteristics:

- root causes
- impact to systems or applications
- diagnosability
Root Cause

- Misused timeout value: 12%
- Missing timeout checking: 47%
- Improper handling: 5%
- Unnecessary timeout: 5%
- Clock drifting: 31%

Misused timeout value & Missing timeout checking dominate.
Root Cause

Misused timeout value (65 bugs)
- Misconfigured timeout value (38 bugs)
- Ignored timeout value (10 bugs)
- Incorrectly reused timeout value (8 bugs)
- Inconsistent timeout value (4 bugs)
- Stale timeout value (3 bugs)
- Improper timeout scope (2 bugs)
An Ignored Timeout Value Example

HBase-8581

The configured timeout value is ignored

```java
//HTable class
operationTimeout = isMetaTable(tableName) ?
HConstants.DEFAULT_HBASE_CLIENT_OPERATION_TIMEOUT :
config.getInt(HConstants.HBASE_CLIENT_OPERATION_TIMEOUT...);
```
Observation

Misused timeout value bugs often occur when:
- lack extensive testing on timeout configurations;
- do not understand the system’s timeout mechanisms.

Setting proper timeout value is challenging.
Root Cause

Missing timeout checking (42 bugs)
- Missing timeout for network communication (26 bugs)
- Missing timeout for synchronization (16 bugs)
A Missing Timeout Example

Zookeeper-2224

Client

send4LetterWord

ZK Leader

ZK Follower

//FourLetterWordMain class
74 sock = new Socket(host, port);

//Socket class
425 connect(address);

• Missing timeout for network communication
Another Missing Timeout Example

HBase-13971

seqNumAssignedLatch.await();

logSeqNum = sequence;
seqNumAssignedLatch.countDown();

Missing timeout for synchronization

RegionServer

getSequenceId

logSeqNum

logSeqNum

WALKey

setLogSeqNum

FSHLog
Observation

Missing timeout bugs often occur when developers do not consider the system’s failover mechanisms.
Root Cause

Improper timeout handling (16 bugs)
- Insufficient/missing retries (8 bugs)
- Excessive retries (3 bugs)
- Incorrect retry (2 bugs)
- Incomplete abort (2 bugs)
- Incorrect abort (1 bug)
Insufficient/missing retries cause job failure

Hadoop-3831

Job failure

DFSClient

Read files req

File contents

DataNode 1

Timeout

Try other DataNodes

Insufficient/missing retries cause job failure
Observation

It is **challenging** to implement proper timeout handling mechanisms, which requires developers to understand:

- the **tradeoffs** between handling schemes (e.g., aborting v.s. retry);
- each handling scheme’s **impact** to the systems and applications.
Root Cause

Unnecessary timeout protection (7 bugs)

Those bugs occur when developers mistakenly use timeout retry mechanisms over operations which requires continuous or at-most-once-execution semantics.
Clock drifting (7 bugs)

Those bugs occur when the clocks are out-of-synchronization, the elapsed time is miscalculated, which generates a wrong timer value.
Impact

- System unavailability: 26%
- Job failure: 33%
- 2%
Unavailability caused by missing timeout

HDFS-4858

NameNode

DataNodes

Secondary NameNode

DataNodes miss timeout. HDFS becomes unavailable.
Only 29% timeout bugs report the correct error messages.
A Wrong Error Message Example

Cassandra-3651

```
try {
    ...
} catch (TimeoutException e) {
    throw new UnavailableException();
}
```
Future Work

Enhanced timeout detection tool
- Feature extraction
- Semi-supervised machine learning scheme
State of the Art

General bug studies [Gunawi et al. SoCC’14, Huang et al. SoCC’15, etc]

- They found timeout bugs widely exist in distributed systems.

Specific bug studies [Yin et al. SOSP’11, Wang et al. IC2E’15, etc]

- Misconfigurations; Data Corruption; Performance; Concurrency.

Performance bug diagnosis [Dean et al. SoCC’14, etc]

- Existing tools cannot detect/diagnose performance anomalies caused by timeout bugs [ICAC’15].

Concurrency bug detection/fix [Jin et al. OSDI’12, PLDI’12, etc]

- Our study reveals under-studied types of root causes for concurrency bugs: missing, misused, and unnecessary timeout.
Conclusion

• We perform a characteristic study of 156 real-world timeout bugs in 11 popular open source cloud server systems.
• 81% timeout bugs are caused by either misused timeout values or missing timeout checking.
• Timeout problems have serious impact to both cloud server systems and applications.
• Existing timeout issues are difficult to diagnose with 71% bugs producing no error message or misleading error messages.

Thank you!