
1

Supplemental Material: Hytrace: A Hybrid
Approach to Performance Bug Diagnosis in

Production Cloud Infrastructures
Ting Dai, Member, IEEE, Daniel Dean, Member, IEEE, Peipei Wang, Member, IEEE,

Xiaohui Gu, Senior Member, IEEE, and Shan Lu, Senior Member, IEEE

✦

1 ADDITIONAL RESULTS

In this section, we disscuss four additional cases to discuss
Hytrace’s bug inference results in detail.

1.1 Additional Case Study

Apache-45856 (C/C++): In this bug, when suexec_log is
larger than 2GB, corresponding CGI and SSI applications,
which are using the suEXEC feature of Apache server, hang.
The root cause of this hang is in function err_output,
which uses fopen to open and append large files (larger
than 2GB) on a 32-bit machine.

Hytrace can identify the root cause function err_output

and have improved this function’s ranking significantly
from the PerfScope result (41th up to 1st). Specifically, when
the performance anomaly happens, Hytrace-dynamic iden-
tifies both function err_output and its caller log_err,
which invoke system calls with abnormal frequencies.
Hytrace rule checker has kept the root-cause function
err_output in its result, because this function matches
“constant parameter”, “unsafe function”, and “uncovered
branch” rules. With some functions, which were originally
higher ranked by Hytrace-dynamic, not matching any Hy-
trace rules, the ranks of err_output and its caller gets
improved a lot. Clearly, the “unsafe function” rule matched
with err_output is exactly the root cause.

Cassandra-5064 (Java): Users reported that sometimes
Cassandra would hang as soon as an ALTER TABLE request
is issued. The hang actually happens in a while loop
in reload function, as shown in Figure 1. In this loop,
maybeSwitchMemtable processes every memtable in a
list (line 174), until there is no remaining memtable in
the list (line 172–173). Clearly, maybeSwitchMemtable

should remove a memtable mt from the list after mt

is processed. Unfortunately, this is only done for dirty

• Ting Dai, Peipei Wang, and Xiaohui Gu are with the North Carolina State
University.
E-mail: {tdai,pwang7}@ncsu.edu, gu@csc.ncsu.edu

• Daniel Dean is with the InsightFinder Inc.
E-mail: daniel@insightfinder.com

• Shan Lu is with the University of Chicago.
E-mail: shanlu@cs.uchicago.edu

Fig. 1. Partial call graph for Cassandra-5064 bug.

memtables (line 650–652), but not clean memtables. As a
result, the while loop in reload becomes infinite, where
maybeSwitchMemtable keeps getting invoked to process
the same clean memtable again and again, endlessly.

Hytrace identified both maybeSwitchMemtable and
reload as rank two suspicious functions. Specifically,
Hytrace-dynamic detected maybeSwitchMemtable be-
cause certain system calls are invoked much more fre-
quently when the bug is triggered. Hytrace-dynamic then
adds reload to the suspicious function list, because it is
the caller of maybeSwitchMemtable. Hytrace rule checker
did not prune out these two functions, as they both match
the “constant parameter” rule, and reload also matches
the “unchanged loop exit condition variables” rule.

The “constant parameter” rule matched with
reload is the direct cause, while the “unchanged
loop exit condition variables” rule matched with
reload is related to the root cause of the observed
performance problem. Specifically, reload invokes
maybeSwitchMemtable with a constant parameter, True
(line 174). As a result of this constant True, expensive
CommitLog.discardCompletedSegments function is
always invoked inside maybeSwitchMemtable (line 694).



2

Fig. 2. Partial call graph for Tomcat-53173 bug.

��������	�
������

������������

����	�
��������
�	

��������
	������

�����������
�������������
�	�
	
�������������� 

�������!

��������	�
�	�����

"#����	
�� �$��
�������������
�	�
	
�������������

"#%������&'(�
	���)*�
�
	��������������
�	������������+�� 

"##�����������

"#,����������-������������-./0�123&0042-560� 

"#7������!��������5	���������0����
�	����

",�������!�

","��!

��

��

8�������������	��
�	

��

8�������������	��
�	

Fig. 3. Partial call graph for Mapreduce-3738 bug.

And all of the above operations keep happening in the
while loop (line 168) without updating any loop exit
condition variables, consuming a lot of CPU and disk
resources and causing the performance problem observed
by users.

Tomcat-53173 (Java): Users reported that sometimes
Tomcat would hang as soon as maxConnections is
set to be -1. The hang happens because Tomcat is
stuck inside the countUpOrAwaitConnection function,
as shown in Figure 2 (the value of maxConnections is
passed to latch.limit and limit). When Acceptor

thread processes incoming connections, it calls function
countUpOrAwaitConnection (line 986). In theory, set-
ting maxConnections as -1 means putting no upper-
limit to accepting client socket connections. Consequently,
countUpOrAwaitConnection should return immedi-
ately without any waiting. Unfortunately, this special set-
ting (i.e., -1) is not specially handled. Instead, function
latch.countUpOrAwait is invoked to try fetching a lock.
This lock fetching will never succeed, as indicated by line
39 and line 41 in function tryAcquireShared — when
limit is -1, the line-39 condition is always true and hence
the function always returns -1, indicating a lock-acquisition
failure. The execution then gets stuck in repeatedly trying to
acquire the lock, while the client’s connections get blocked.

Hytrace identified countUpOrAwaitConnection as a
rank 10 suspicious function. Specifically, Hytrace-dynamic
detected countUpOrAwaitConnection because it in-
vokes a set of system calls with abnormal frequencies in

performance-anomaly runs. Hytrace rule checker did not
prune out this function, as it matches with the “uncovered
branch” rule — line 672 in Figure 2.

The uncovered-branch rule matched with
countUpOrAwaitConnection is related to the root
cause of the observed performance problem. The patch
exactly added more handling for more branch scenarios
around line 672, as shown in Figure 2.

Mapreduce-3738 (Java): In our previous paper [1], Hy-
trace failed to diagnose the Mapreduce-3738 bug. we
have re-done the experiments and found that the miss
detection is caused by missing the profiles for the root
cause functions. After adding the missing profiles back,
Hytrace successfully identifies the root cause function
AppLogAggregatorImpl.join and ranked it the 4th.

We now describe this bug in detail. As shown
by Figure 3, once an uncaught runtime exception
(e.g., OutofMemoryError) happens in the function
AppLogAggregatorImpl.run, the true-setting for a vari-
able appAggregationFinished could be skipped (line
193). NodeManager will then hang during shutdown
by calling AppLogAggregatorImpl.join, waiting for
appAggregationFinished to become true forever (line
253). The patch simply moves the set(true) into
a finally block, which guarantees the execution of
set(true) even when an uncaught exception happens.

Hytrace identifies AppLogAggregatorImpl.join as a
suspicious function and have improved this function’s rank
from the PerfScope result (12th to 4th). Specifically, Hytrace-
dynamic detected AppLogAggregatorImpl.join be-
cause it invokes system call sequence {sys_futex,
sys_stat64, sys_stat64, sys_futex} with abnormal
frequencies. Hytrace rule checker did not prune out this
function, as it matches with the “unchanged loop exit
condition variables” rule (line 253). In addition, Hytrace
rule checker also identifies AppLogAggregatorImpl.run
as a suspect function, as the invocation of set(true)

matches the “constant parameter” rule. However, the
dynamic component of Hytrace fails to identify run

function. The reason is that Hytrace-dynamic looks for
abnormal system-call related runtime behavior changes.
AppLogAggregatorImpl.run itself and its callee func-
tions do not issue many system calls and hence are not
identified as abnormal.

REFERENCES

[1] Ting Dai, Daniel Dean, Peipei Wang, Xiaohui Gu, and Shan Lu. Hy-
trace: A hybrid approach to performance bug diagnosis in production
cloud infrastructures. In SoCC, 2017.


	Additional Results
	Additional Case Study

	References

