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Contributions:
• We build a new domain-agnostic, byte-code-based software hang bug 

fixing system.
• We classify hang bugs into different likely root cause patterns and 

generate patches.
• We conduct an empirical study of 237 bugs to quantify the generality 

of root cause patterns and fixing coverage. 
• We implement a prototype and conduct experiment on 42 real-world 

bugs. 

• The empirical study results show that 76% hang bugs fall into 
HangFix’s four root cause patterns.

• For the hang bugs falling into the four root cause patterns, 
HangFix can fix 75% of them completely.

• Only 14 of the 42 reproduced bugs are resolved with working manual 
patches.

• The experimental results show that 40 out of 42 reproduced bugs are 
completely fixed by HangFix. 

• The fixing time ranges from 0.7 to 22 seconds.
• The additional performance overhead after adopting HangFix’s patch 

is less than 1%.

Hang function localization: We leverage stack traces to pinpoint the root
cause hang function.

Likely root cause pattern matching: We leverage static code analysis to 
match commonly seen root cause patterns.

Patch generation: We produce patched bytecodes based on the identified 
root cause patterns.

• Software hang bugs cause unresponsive or frozen system instead of 
system crashing.

• Hang bugs are difficult to diagnose and fix due to the lack of debugging 
information.

• Previous work focuses on generic hang bug detection and little work 
explores how to fix hang bugs automatically.

RQ1: How many bugs fall into the HangFix’s four root cause 
patterns?

RQ2: How’s HangFix’s fixing performance, including fixing coverage, fixing 
time and additional overhead after adopting HangFix’s patches?

• HangFix leverages both dynamic and static analysis techniques.
• HangFix is a new pattern driven approach and the patch generation is 

based on the identified root cause patterns.
• HangFix’s design principles and its performance make it practical to be 

applied in production cloud systems.
• HangFix focuses on hang bug fixing and it can be integrated with 

existing hang bug detection tools.Patch validation: We validate the patches by re-running hang bug detection, 
hang function localization, and application’s regression test suites.

• For the hang 
bugs that cannot 
be completely 
fixed, their 
manual patches 
contain 
application-
specific functions 
or it is required 
to restore system 
state to fix the 
bug.

Challenges:
• The root causes of hang bugs are diverse.
• Source node is often inaccessible, and it is essential to design 

application-agnostic bug fixing system.
• Tradeoff between design complexity and fixing coverage.
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