
Motivation and Problem

Lessons
HangFix Framework

Results Analysis

Jingzhu He1, Ting Dai2, Xiaohui Gu1, Guoliang Jin1
1Department of Computer Science, North Carolina State University

2 IBM Research

HangFix: Automatically Fixing Software Hang Bugs for Production Cloud Systems 

Supported by the NSF funding CNS1513942 and CNS1149445

Contributions:
• We build a new domain-agnostic, byte-code-based software hang bug 

fixing system.
• We classify hang bugs into different likely root cause patterns and 

generate patches.
• We conduct an empirical study of 237 bugs to quantify the generality 

of root cause patterns and fixing coverage. 
• We implement a prototype and conduct experiment on 42 real-world 

bugs. 

• The empirical study results show that 76% hang bugs fall into 
HangFix’s four root cause patterns.

• For the hang bugs falling into the four root cause patterns, 
HangFix can fix 75% of them completely.

• Only 14 of the 42 reproduced bugs are resolved with working manual 
patches.

• The experimental results show that 40 out of 42 reproduced bugs are 
completely fixed by HangFix. 

• The fixing time ranges from 0.7 to 22 seconds.
• The additional performance overhead after adopting HangFix’s patch 

is less than 1%.

Hang function localization: We leverage stack traces to pinpoint the root
cause hang function.

Likely root cause pattern matching: We leverage static code analysis to 
match commonly seen root cause patterns.

Patch generation: We produce patched bytecodes based on the identified 
root cause patterns.

• Software hang bugs cause unresponsive or frozen system instead of 
system crashing.

• Hang bugs are difficult to diagnose and fix due to the lack of debugging 
information.

• Previous work focuses on generic hang bug detection and little work 
explores how to fix hang bugs automatically.

RQ1: How many bugs fall into the HangFix’s four root cause 
patterns?

RQ2: How’s HangFix’s fixing performance, including fixing coverage, fixing 
time and additional overhead after adopting HangFix’s patches?

• HangFix leverages both dynamic and static analysis techniques.
• HangFix is a new pattern driven approach and the patch generation is 

based on the identified root cause patterns.
• HangFix’s design principles and its performance make it practical to be 

applied in production cloud systems.
• HangFix focuses on hang bug fixing and it can be integrated with 

existing hang bug detection tools.Patch validation: We validate the patches by re-running hang bug detection, 
hang function localization, and application’s regression test suites.

• For the hang 
bugs that cannot 
be completely 
fixed, their 
manual patches 
contain 
application-
specific functions 
or it is required 
to restore system 
state to fix the 
bug.

Challenges:
• The root causes of hang bugs are diverse.
• Source node is often inaccessible, and it is essential to design 

application-agnostic bug fixing system.
• Tradeoff between design complexity and fixing coverage.

Pattern 1
21%

Pattern 2
6%

Pattern 3
19%

Pattern 4
30%

Missing 
unlock

3%

Race 
induced 

infinite loop
4%

Race induced 
blocking

4%

Deadlock
13%

0

50

Pattern 1 Pattern 2 Pattern 3 Pattern 4

Percentage of completely and partially fixed bugs. 

Completely fixed Part ially fixed

Patched application bytecode

Bug 
triggering 
test case

Patch validation

Patch generation

Likely root cause pattern matching

Application 
bytecode

Hang function localization

Hang 
function

Infinite loop Blocking

Pattern 2: 
Misconfigured 
parameters in 

loops

Pattern 1: 
Unexpected 

function 
return values 

in loops

Pattern 3: 
Improper 
exception 
handling in 

loops

Pattern 4: 
Blocking 

operations 
without loops

Throw 
exception

Restore the 
default value

Trace 
execution of 

loop updating
Add timeout 

checking

Pe
rc

en
ta

ge
 (%

)


