HangFix: Automatically Fixing Software Hang Bugs for Production Cloud S

Jingzhu He', Ting Dai2, Xiaohui Gu', Guoliang Jin'
Department of Computer Science, North Carolina State University
2 |BM Research

Results Analysis

NC STATE

UNIVERSITY

tivation and Problem

e Software hang bugs cause unresponsive or frozen system instead of
system crashing.

* Hang bugs are difficult to diagnose and fix due to the lack of debugging
information.

* Previous work focuses on generic hang bug detection and little work
explores how to fix hang bugs automatically.

Challenges:

* The root causes of hang bugs are diverse.

e Source node is often inaccessible, and it is essential to design
application-agnostic bug fixing system.

e Tradeoff between design complexity and fixing coverage.

Contributions:

* We build a new domain-agnostic, byte-code-based software hang bug
fixing system.

* We classify hang bugs into different likely root cause patterns and
generate patches.

* We conduct an empirical study of 237 bugs to quantify the generality
of root cause patterns and fixing coverage.

* We implement a prototype and conduct experiment on 42 real-world

bugs.

RQ1: How many bugs fall into the HangFix’s four root cause
patterns?

¢ The empirical study results show that 76% hang bugs fall into
HangFix’s four root cause patterns.

* For the hang bugs falling into the four root cause patterns,
HangFix can fix 75% of them completely.

e Forthe hang

bugs that cannot Race induced Deadlock Pattern 1

be completely blocking 13% 21%

fixed, their 4% pattern 2
manual patches Race

§ 6%

contain induced

application- infinite loop <

specific functions 4%

or it is required ’Z':lf)':f Pattern 3
to restore system 19%

3%
Pattern 4

30%

state to fix the
bug.

HangFix Framework

Hang function localization: We leverage stack traces to pinpoint the root
cause hang function.

Likely root cause pattern matching: We leverage static code analysis to
match commonly seen root cause patterns.

Patch generation: We produce patched bytecodes based on the identified
root cause patterns.

Patch validation: We validate the patches by re-running hang bug detection,
hang function localization, and application’s regression test suites.

Bug
triggering
test case

Hang
function

Application
bytecode

Hang function localization

(Cukely oot cause pattern matching |

Pattern 1:
u ted
function
return values
in loops

i
- & o Trace . H
row estore the CrEmEm Add timeout i
exception | | defaultvalue | |io0p updating checking | 1
'

i

Pattern 3:
Improper
exception
handling in

Pattern 2:

parameters in

Percentage of completely and partially fixed bugs.

50

OI-II

Pattern1 Pattern2 Pattern3 Pattern4

Percentage (%)

B Completely fixed M Partially fixed

RQ2: How’s HangFix’s fixing performance, including fixing coverage, fixing
time and additional overhead after adopting HangFix’s patches?

¢ Only 14 of the 42 reproduced bugs are resolved with working manual
patches.

¢ The experimental results show that 40 out of 42 reproduced bugs are
completely fixed by HangFix.

e The fixing time ranges from 0.7 to 22 seconds.

* The additional performance overhead after adopting HangFix’s patch
is less than 1%.

Lessons

e HangFix leverages both dynamic and static analysis techniques.

e HangFix is a new pattern driven approach and the patch generation is
based on the identified root cause patterns.

e HangFix’s design principles and its performance make it practical to be
applied in production cloud systems.

e HangFix focuses on hang bug fixing and it can be integrated with
existing hang bug detection tools.

Supported by the NSF funding CNS1513942 and CNS1149445

