
FabZK: Supporting Privacy-Preserving, Auditable
Smart Contracts in Hyperledger Fabric

Hui Kang (IBM), Ting Dai (NCSU), Nerla Jean-Louis
(IBM), Shu Tao (IBM), Xiaohui Gu (NCSU)

Blockchain
• An immutable ledger for recording transactions,

maintained within a distributed network
• Each node has a copy of the ledger
• Consensus protocol to order transactions
• Transactions are grouped into blocks and chained together

• Benefits: transparency, security, traceability
• Existing platforms can be categorized into two types

• Permission-less, e.g., bitcoin, Ripple, Stellar
• Permissioned, e.g., Zcash, Ethereum, Hyperledger Fabric

• An immutable ledger for recording transactions,
maintained within a distributed network
• Each node has a copy of the ledger
• Consensus protocol to order transactions
• Transactions are grouped into blocks and chained together

• Benefits: transparency, security, traceability
• Existing platforms can be categorized into two types

• Permission-less, e.g., bitcoin, Ripple, Stellar
• Permissioned, e.g., Zcash, Ethereum, Hyperledger Fabric

Blockchain

Lack of auditable privacy-preserving transactions

Hyperledger Fabric

• Open source enterprise-grade distributed ledger platform

• IBM Blockchain platform on IBM Cloud, AWS, and Azure

• Hosted by Linux Foundation

• 170+ contributors world wide

Motivating Example

• Running example: over-the-counter (OTC) platform

Motivating Example

• Running example: over-the-counter (OTC) platform

Motivating Example

• Running example: over-the-counter (OTC) platform

Implementation in Fabric

Organizations

Channel

P

P

PP

P

P

PP

Transaction Flow in Fabric

Client

f(X)

Peer

Ordering
service

Order

Update
Ledger

Peer

1

2

3

4

Privacy in Hyperledger Fabric
(Motivation)

• Although consortium contains a certain
degree of knowledge about the channel
participants, members still want to keep
the actual transaction private, due to
business or privacy concerns.

Ledger

transactions

state

Most Important Business Resources

Organization

Channel

P

P

PP

P

P

P
P

Accessible by
all admitted organizations

Transfer transaction

Spending org: A
Receiving org: B
Transfer amount: 100

Standard Fabric
(No privacy, auditable)

Auditor

• 100 + (-100) = 0
• Transaction graph revealed

Transfer transaction

Spending org: A
Receiving org: B
Transfer amount: 100

Standard Fabric
(No privacy, auditable)

Auditor

• 100 + (-100) = 0
• Transaction graph revealed

Transfer transaction

Spending org: A
Receiving org: B
Transfer amount: H(100)

amount concealed
(Privacy, non-auditable)

• H(100), H(-100) are non-auditable
• Transaction graph revealed

Transfer transaction

Spending org: A
Receiving org: B
Transfer amount: 100

Standard Fabric
(No privacy, auditable)

Auditor

• 100 + (-100) = 0
• Transaction graph revealed

Transfer transaction

Spending org: A
Receiving org: B
Transfer amount: H(100)

Identity and amount concealed
(Privacy, non-auditable)

• H(100), H(-100) are non-auditable
• Transaction graph revealed

Transfer transaction

Spending org: F(A)
Receiving org: F(B)
Transfer amount: F(100)

Identity and amount concealed
(Privacy, Auditable)

• F (100) + F(-100) + F(0) + … = 0
• Transaction graph concealed

Transfer transaction

Spending org: A
Receiving org: B
Transfer amount: 100

Standard Fabric
(No privacy, auditable)

Transfer transaction

Spending org: A
Receiving org: B
Transfer amount: H(100)

Identity and amount concealed
(Privacy, non-auditable)

Auditor

• 100 + (-100) = 0
• Transaction graph revealed

• H(100), H(-100) are non-auditable
• Transaction graph revealed

Transfer transaction

Spending org: F(A)
Receiving org: F(B)
Transfer amount: F(100)

Identity and amount concealed
(Privacy, Auditable)

• F (100) + F(-100) + F(0) + … = 0
• Transaction graph concealed

Q: How to combine public auditability with privacy?
A: Using Zero-knowledge asset transfer

This Talk

• FabZK: Auditable, zero-knowledge asset transfer in
Hyperledger Fabric
• Theoretical model via proven cryptographic primitives

• FabZK design and architecture

• Computation Parallelism

• Performance evaluation

Auditable, Zero-Knowledge Transfer

• TXm: organization A sends u=100 shares of asset to organization B

Transaction ID Organization A Organization B
1

m -100 +100

Ledger on Fabric

• Pedersen commitment: a commitment scheme that encrypts a value,
with the ability to reveal it later

𝐶𝑜𝑚 𝑢, 𝑟 = 𝑔!ℎ"

Auditable, Zero-Knowledge Transfer

• TXm: organization A sends u=100 shares of asset to organization B

Transaction ID Organization A Organization B
1

m Com(-100, r1) Com(+100, r2)

Ledger on Fabric

Auditable, Zero-Knowledge Transfer

• TXm: organization A sends u=100 shares of asset to organization B

Transaction ID Organization A Organization B
1

m Com(-100, r1) Com(+100, r2)

Ledger on Fabric

• Homomorphism of Pedersen commitment:

!
!"#

$
𝑢! = 0 !

!"#

$
𝑟! = 0 prove

&
!"#

$
Com! = 𝐶𝑜𝑚 𝑢1, 𝑟1 𝐶𝑜𝑚(𝑢2, 𝑟2 ⋯ = 𝐶𝑜𝑚 𝑢1+ 𝑢2⋯, 𝑟1 + 𝑟2… = 𝑔∑ &ℎ∑ '∵

∵ &
!"#

$
Com! = 𝑔(ℎ(= 1

Auditable, Zero-Knowledge Transfer

• TXm: organization A sends u=100 shares of asset to organization B

Transaction ID Organization A Organization B
1

m Com(-100, r1) Com(+100, r2)

Ledger on Fabric

• Proof of Balance: the auditor verifies the balance of individual
transactions, ∏!"#

$ 𝐶𝑜𝑚 = 1
• Privacy is preserved as the actual transaction amount is not

exposed to the auditor

Auditable, Zero-Knowledge Transfer

Overview

Transfer transaction

Spending org: A
Receiving org: B
Transfer amount: 100

Plaintext transaction

FabZK

Privacy-preserving, auditable
transaction on ledger

Auditable, ZK transaction
Spending org:
Receiving org:
Transfer amount:

Overview

• Privacy-preserving
• Pedersen commitment
• Anonymize the identities of the spending and the

receiving organization
• Auditable
• Non-interactive zero-knowledge (NIZK) proof

Transfer transaction

Spending org: A
Receiving org: B
Transfer amount: 100

Plaintext transaction

FabZK

Privacy-preserving, auditable
transaction on ledger

Auditable, ZK transaction
Spending org:
Receiving org:
Transfer amount:

Anonymity

• The identity of organization A and B (aka., transaction graph) is exposed

Transaction ID Organization A Organization B

1

m Com(-100, r1) Com(+100, r2)

Anonymity

• The identity of organization A and B (aka., transaction graph) is exposed

Transaction ID Organization A Organization B

1

m Com(-100, r1) Com(+100, r2)

Transaction ID Organization A Organization B Organization C Organization D
1

m Com(-100, r1) Com(+100, r2) Com(0, r3) Com(0, r4)

Commitments are indistinguishable to outsiders, so the transaction graph is concealed

Include the commitments of all organizations in the transaction record

Non-interactive Zero-Knowledge
Proofs

Knowledge

I know that “… …”Prover Verifier

Non-interactive Zero-Knowledge
Proofs

Knowledge

I know that “… …”Prover Verifier

Transaction
creator

The transaction is
balanced

Verifier

!
!"#

$
𝑢! = 0 !

!"#

$
𝑟! = 0 prove &

!"#

$
Com! = 𝑔(ℎ(= 1Proof of Balance

Transaction ID Organization A Organization B Organization C Organization D

1

m Com(-100, r1) Com(+100, r2) Com(0, r3) Com(0, r4)

• A transaction row is created by the spending organization

Transaction ID Organization A Organization B Organization C Organization D

1

m Com(-100, r1) Com(+100, r2) Com(0, r3) Com(0, r4)

• A transaction row is created by the spending organization

Transaction ID Organization A Organization B Organization C Organization D

1

m Com(-50, r1) Com(+100, r2) Com(-50, r3) Com(0, r4)

𝐶𝑜𝑚 −50, 𝑟1 ∗ 𝐶𝑜𝑚 100, 𝑟2 ∗ 𝐶𝑜𝑚 −50, 𝑟3 ∗ 𝐶𝑜𝑚(0, 𝑟3) = 1

A malicious organization may steal assets from non-transactional organization

Transaction ID Organization A Organization B Organization C Organization D

1

m Com(-100, r1) Com(+100, r2) Com(0, r3) Com(0, r4)

• A transaction row is created by the spending organization

Transaction ID Organization A Organization B Organization C Organization D

1

m Com(-50, r1) Com(+100, r2) Com(-50, r3) Com(0, r4)

Proof of Balance is insufficient

𝐶𝑜𝑚 −50, 𝑟1 ∗ 𝐶𝑜𝑚 100, 𝑟2 ∗ 𝐶𝑜𝑚 −50, 𝑟3 ∗ 𝐶𝑜𝑚(0, 𝑟3) = 1

A malicious organization may steal assets from non-transactional organization

Proof of Correctness
• Prove the legitimacy of commitment written by the

spending organization
• Each commitment has an token generated from an

organization’s public key (pk) and private key (sk)

If holds, it proves Comm matches um

Proof of Correctness
• Prove the legitimacy of commitment written by the

spending organization
• Each commitment has an token generated from an

organization’s public key (pk) and private key (sk)

Transaction ID Organization A Organization B Organization C Organization D
1

m Com(-50, r1) Com(+100, r2) Com(-50, r3) Com(0, r4)

If holds, it proves Comm matches um

o Organization C knows its actual transfer amount is 0

- The transaction row is invalid due to Com(-50, r3)
- Privacy is preserved; each organization verifies by itself

• Proof of Assets ensures the spending organization has enough
assets

• Proof of Amount ensures the transaction amount is within
certain range

• Proof of consistency ensures that expressions and parameters
are consistent across the different proofs

• Data dependency in computing the five proofs
o Proof of balance and proof of correctness does not reply on prior data,

while
o The other three proofs have to be computed based on historical data
o An important feature to be leveraged in FabZK’s implementation

O
ff-

ch
ai

n
O

n-
ch

ai
n

Spending organization Other organizations

Private ledger

Client
node

Endorser

Committer

Public ledger

Private ledger

Client
node

Endorser

Committer

Public ledger

Ordering service

FabZK Architecture

FabZK Transaction Flow by Example
O

ff-
ch

ai
n

O
n-

ch
ai

n

Private ledger

Client
node

Endorser

Committer

Public ledger

Private ledger

Client
node

Endorser

Committer

Public ledger

Ordering service

Preparation

1

1. Preparation – Prepare the
transaction request in the form
of N tx amount, and submit to
the Blockchain network

Spending organization Other organizations

O
ff-

ch
ai

n
O

n-
ch

ai
n

Private ledger

Client
node

Endorser

Committer

Public ledger

Private ledger

Client
node

Endorser

Committer

Public ledger

Ordering service

Preparation

Execution

FabZK Transaction Flow by Example

2. Execution – Execute chaincode
to compute N <Com, token> of
the tx, return to client code

1. Preparation – Prepare the
transaction request in the form
of N tx amount, and submit to
the Blockchain network

1

2

Spending organization Other organizations

O
ff-

ch
ai

n
O

n-
ch

ai
n

Private ledger

Client
node

Endorser

Committer

Public ledger

Private ledger

Client
node

Endorser

Committer

Public ledger

Ordering service

Preparation

Execution

FabZK Transaction Flow by Example

2.5 Ordering and committing the N
<Com, token> of the tx

2. Execution – Execute chaincode
to compute N <Com, token> of
the tx, return to client code

1. Preparation – Prepare the
transaction request in the form
of N tx amount, and submit to
the Blockchain network

1

2

Spending organization Other organizations

2.5

O
ff-

ch
ai

n
O

n-
ch

ai
n

Private ledger

Client
node

Endorser

Committer

Public ledger

Private ledger

Client
node

Endorser

Committer

Public ledger

Ordering service

Preparation

Execution

Notification Notification

FabZK Transaction Flow by Example

3. Notification – client code of all
organizations informed of the
new committed tx

2.5 Ordering and committing the N
<Com, token> of the tx

2. Execution – Execute chaincode
to compute N <Com, token> of
the tx, return to client code

1. Preparation – Prepare the
transaction request in the form
of N tx amount, and submit to
the Blockchain network

2.5

1

2

3 3

Spending organization Other organizations

O
ff-

ch
ai

n
O

n-
ch

ai
n

Private ledger

Client
node

Endorser

Committer

Public ledger

Private ledger

Client
node

Endorser

Committer

Public ledger

Ordering service

Preparation

Execution 2-step validation* 2-step validation*

3. Notification – client code of all
organizations informed of the
new committed tx

2.5 Ordering and committing the N
<Com, token> of the tx

2. Execution – Execute chaincode
to compute N <Com, token> of
the tx, return to client code

4. 2-step validation
4.1 Proof of balance and
correctness concurrently and
parallelly by all organizations
4.2 The other 3 proofs are
computed sequentially

1. Preparation – Prepare the
transaction request in the form
of N tx amount, and submit to
the Blockchain network

FabZK Transaction Flow by Example

Notification Notification

2.5

1

2

3 3

4 4

Spending organization Other organizations

Implementation: Computation Parallelism

• Cryptographic algorithms are compute-intensive

• To improve performance, we explore parallelizing
the computation during the execution and two-
step validation phases

Parallelism in Execution Phase
• The spending organization’s chaincode computes

commitments and tokens for each organization

Thread Pool
Peer Node

Org1: <u1, r1> Org2: <u2, r2> Org3: <u3, r3> Org4: <u4, r4> Org5: <u5, r5>

<Comm2,
Token2>

<Comm3,
Token3>

<Comm4,
Token4>

<Comm5,
Token5>

Scheduler

<Comm1,
Token1>

Tx row

Parallelism in Two-step Validation
• Step-1: Verifying proof of balance and proof of

correctness has no dependency on prior transactions

Org1: Peer Node Org2: Peer Node

Org1’s client Org2’s client Org3’s client

tx1tx2tx3

Committed tx on ledger

Notification

Org1: Peer Node

tx3

tx1

tx2

tx3

tx2

tx1

tx1

tx2

tx3• Out of order
• Concurrent

Parallelism in Two-step Validation (cont’d)
• Step-2: computing range proof and disjunctive

proof depends on prior transactions

Org1: Peer Node Org2: Peer Node

Org1’s client Org2’s client Org3’s client

tx1
(org1)

tx2
(org2)

tx3
(org3)

Committed tx on ledger

Notification

Org1: Peer Node

tx1

tx2

tx3
• Audit tx

sequentially
• Proof generated by

the spending org
• Verification must be

done by the auditor

Writing Chaincode in FabZK
• Similar to Fabric, except for using FabZK’s API

Writing Chaincode in FabZK
• Similar to Fabric, except for using FabZK’s API
• A bare-minimum application in FabZK supports the

following chaincode methods:
• Transfer: exchange asset between organizations and

write the transaction to the public ledger
(zkPutState)

• Audit: Compute the range proof and disjunctive proof
for the transactions and write to the public ledger
(zkAudit)

• Validation: Invoke the 2-step validation to verify the
transaction (zkVerify will be called twice)

Performance of Cryptographic Algorithm
• Time to encrypt the tx amount, generate proofs, and

verify proofs
• Number of organizations ranges from 1 to 20

• FabZK outperforms in encryption and proof verification
• Further improvement by exploring scheduling schemes

Performance of OTC Application
• Throughput comparison: Fabric, FabZK w/wo

auditing, and zkLedger

Performance of OTC Application
• Throughput comparison: Fabric, FabZK w/wo

auditing, and zkLedger
• The overhead of FabZK from 3% to 10% w/o auditing
• Parallelized 2-step validation avoids sequential

commits as in zkLedger

0
50

100
150
200
250
300

2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (t

x/
s)

Number of organizations

Baseline zkLedger FabZK-w/o-auditing FabZK-w-auditing

Performance of OTC Application (cont’d)

• Latency of auditing: time to run 2rd step of the two-
step validation
• ZkAudit and ZkVerify: compute and verify range

proofs and disjunctive proofs
• # of CPU cores from 2-core to 8-core; 4-organization

network
• Performance improved by ~50% for ZkAudit; minimal

impact on ZkVerify

0

200

400

600

ZkAudit ZkVerify

La
te

nc
y

(m
s)

2-core
4-core
8-core

Conclusion
• Data privacy and auditability are critical in blockchain

• FabZK is an extension to Fabric to enable auditable
privacy-preserving smart contracts

• FabZK enables auditable privacy-preserving
transactions with reasonable performance cost

Thanks You!

Questions?

Backup

Ledger of FabZK

• Row: represents one transaction indexed by its ID
• Columns: all organizations in the blockchain network

• Hides the transaction details in commitment
• Proves the legitimacy through the zero-knowledge Proofs

• Two validation bitmaps
• Vr: proof of balance, proof of correctness
• Vc: proof of assets, proof of amount, and proof of consistency

Tx ID Organization A Organization B Organization C Organization D Vr Vc

1

m Com(-100, r1),
token, proofs

Com(+100, r2),
token, proofs

Com(0, r3),
token, proofs

Com(0, r4),
token, proofs

Bitmap Bitmap

O
ff-

ch
ai

n
O

n-
ch

ai
n

Spending organization Other organizations

Private ledger

Client
node

Endorser

Committer

Public ledger

Private ledger

Client
node

Endorser

Committer

Public ledger

Ordering service

Preparation
1

Execution

3 3

2-step validation* 2-step validation*

API Interface to FabZK App Developer
Client code API
• Access private and public

ledgers
• Constructs and submit

transactions
• Trigger the validation

process

O
ff-

ch
ai

n
O

n-
ch

ai
n

Spending organization Other organizations

Private ledger

Client
node

Endorser

Committer

Public ledger

Private ledger

Client
node

Endorser

Committer

Public ledger

Ordering service

Preparation

Execution

Notification Notification

O
ff-

ch
ai

n
O

n-
ch

ai
n

Spending organization Other organizations

Private ledger

Client
node

Endorser

Committer

Public ledger

Private ledger

Client
node

Endorser

Committer

Public ledger

Ordering service

1

Execution

3 3

2-step validation* 2-step validation*

Client code API
• Access private and public

ledgers
• Constructs and submit

transactions
• Trigger the validation

process

Chaincode API
• Write transactions on the

public ledger
(commitment, token)

• Compute proofs in 2-step
validation phase

• Verify proofs

API Interface to FabZK App Developer
O

ff-
ch

ai
n

O
n-

ch
ai

n

Spending organization Other organizations

Private ledger

Client
node

Endorser

Committer

Public ledger

Private ledger

Client
node

Endorser

Committer

Public ledger

Ordering service

Execution

Notification Notification

2-step validation*2-step validation*

Preparation

Implementation: Public Ledger

Transaction ID Organization A Organization B Vr Vc
1

m Com(-100, r1),
token, proofs

Com(+100, r2),
token, proofs

Bitmap Bitmap

Ledger on Fabric

Transaction ID Organization A Organization B Vr Vc
1

m Com(-100, r1),
token, proofs

Com(+100, r2),
token, proofs

Bitmap Bitmap

Ledger on Fabric

• Chaincode API
o zkPutState: <comm,

token>
o zkAudit: range proofs,

disjunctive proofs, etc
o zkVerify: Set the valid

status for both columns and
row

Implementation: Public Ledger

Writing Chaincode in FabZK
• Similar to Fabric, except for using FabZK’s API

Writing Chaincode in FabZK
• Similar to Fabric, except for using FabZK’s API
• A bare-minimum application in FabZK supports the

following chaincode methods:
• Transfer: exchange asset between organizations and

write the transaction to the public ledger
(zkPutState)

• Audit: Compute the range proof and disjunctive proof
for the transactions and write to the public ledger
(zkAudit)

• Validation: Invoke the 2-step validation to verify the
transaction (zkVerify will be called twice)

OTC Application written in FabZK
Org1’s client Org2’s client Org3’s client Org4’s client

time

tx1
(org1)

tx1
(org1)

Transfer method
encrypt the details

OTC Application written in FabZK
Org1’s client Org2’s client Org3’s client Org4’s client

time

tx1
(org1)

tx1
(org1)

Transfer method
encrypt the details

Validated by all orgs
as step 1 validation

tx1
(org1)

OTC Application written in FabZK
Org1’s client Org2’s client Org3’s client Org4’s client

time

tx1
(org1)

tx1
(org1)

tx1
(org1) Proofs

Transfer method
encrypt the details

Validated by all orgs
as step 1 validation

Audit adds the
proofs to the tx
record

tx1
(org1)

OTC Application written in FabZK
Org1’s client Org2’s client Org3’s client Org4’s client

time

tx1
(org1)

tx1
(org1)

tx1
(org1) Proofs

tx1
(org1) Proofs

Transfer method
encrypt the details

Validated by all orgs
as step 1 validation

Audit adds the
proofs to the tx
record

Validated by all orgs
as step 2 validation

tx1
(org1)

