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Abstract—The advent of large language models (LLMs) has
greatly facilitated code generation, but ensuring the functional
correctness of generated code remains a challenge. Traditional
validation methods are often time-consuming, error-prone, and
impractical for large volumes of code. We introduce CodeSift,
a novel framework that leverages LLMs as the first-line filter
of code validation without the need for execution, reference
code, or human feedback, thereby reducing the validation effort.
We assess the effectiveness of our method across three diverse
datasets encompassing two programming languages. Our results
indicate that CodeSift outperforms state-of-the-art code evalu-
ation methods. Internal testing conducted with subject matter
experts reveals that the output generated by CodeSift is in
line with human preference, reinforcing its effectiveness as a
dependable automated code validation tool.

Index Terms—code generation, validation, large language mod-
els, generative AI

I. INTRODUCTION

In today’s software development landscape, the proliferation
of large language models (LLMs) has vastly accelerated the
pace and adoption of code generation. For instance, with the
increase in IT deployments and cloud adoption, IT operations
(ITOps) that are critical for maintaining reliable and resilient
systems, can extend the use of AI and automation through
code generation to reduce mean time to resolve incidents.
When an incident occurs, Site Reliability Engineers (SREs)
are tasked with diagnosing the fault and finding a resolution.
Traditionally, SREs would typically write code scripts manu-
ally to carry out these resolutions. Recently, with the advent
of LLMs, code generation capabilities are now used to assist
in incident remediation and automation.

The widespread adoption of generated code brings a need
for robust validation mechanisms to ensure its functional cor-
rectness before deployment in production systems. Deploying
unvalidated code directly into these systems can lead to severe
consequences, including performance degradation and critical
system failures. While manual inspection is the gold standard
solution, the sheer volume of generated code makes it labor-
intensive and time-consuming.

Recent approaches to evaluate generated code either use
reference codes to compare with or are based on runtime exe-

cution correctness [1]–[6]. However, these approaches come
with the need for availability of reference codes or test
cases and are limited by scalability constraints with increased
workload.

To address these issues, we propose a novel framework,
called CodeSift, to act as a first-line filter for generated
code evaluation. This framework is designed to validate the
functional correctness of generated code using LLMs as eval-
uators. By harnessing the power of advanced natural language
understanding, semantic comprehension, and code analysis
capabilities offered by LLMs, CodeSift offers an efficient
solution to the challenge of code validation, significantly
reducing the burden on human validators and streamlining
the code validation process. Code snippets that pass the first-
line validation can undergo further scrutiny by human experts
or be tested in a controlled development environment, thus
maximizing efficiency and minimizing the risk of deploying
faulty code. Our contributions are:

• We propose CodeSift, an automatic and effective validation
framework for assessing the quality of generated code,
eliminating the need for execution, reference codes, and test
cases.

• We contribute a novel Bash dataset consisting of 100 unique
tasks with corresponding test cases and example ground
truth code.

• We showcase CodeSift’s efficacy as a primary filter for
automated script validation across various datasets including
opensource Python dataset such as HumanEval [7] and
MBPP [8] and our manually curated Bash dataset, through
a comparative analysis with test case-based validation.

• We present how CodeSift can serve as a valuable metric for
ranking various code generation models, aiding in model
selection and performance evaluation in the absence of
ground truth reference codes or test cases.

• Results from user studies indicate that CodeSift’s evalua-
tions closely align with human experts’ judgments, demon-
strating its reliability and effectiveness in assessing the
functional correctness of generated code.
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Fig. 1. CodeSift: Automated Script Validation System Diagram and Prompt Examples. Prompt 1 extracts code functionality, Prompt 2 assesses task-code
similarity, and Prompt 3 analyzes differences.”

II. RELATED WORK

Many approaches for generated code evaluation have been
proposed in the literature along four dimensions: (1) match-
based (2) embedding-based, (3) execution-based, and (4)
prompt-based.

Prior work such as BLEU, ROGUE, and ChrF assessed
the quality of the generated code relying on token match-
ing with the reference code. BLEU score [9] and ROUGE
score [10] calculate the precision and recall of word n-grams
in the machine-generated code by comparing them to the
reference code, respectively. ChrF [11] calculates the f-scores
of the character n-grams between the generated code and the
reference code. In programming languages, even unrelated
pieces of code can share many common n-grams due to
syntactic verbosity and coding conventions. Relying solely
on n-gram matching fails to distinguish between similar code
examples and those merely written using the same vocabulary.
CrystalBLEU [1] addresses the issue of solely relying on n-
gram matching by minimizing the noise caused by trivially
shared n-grams, such as ‘(’ and ‘,’. CodeBLEU [2] assesses
deep semantic similarities by incorporating weighted n-gram
matching, syntactic AST matching, and semantic dataflow
matching.

Embedding-based evaluation approaches for example,
CodeBertScore [3] measure the similarity between generated
and reference code by summing the cosine similarities between
their token embeddings and by incorporating contextual infor-
mation.

Both match-based and embedding-based approaches demon-
strate a poor correlation with human judgment or runtime
execution validation. Moreover, these approaches only work
when reference code is available, hindering their practicability.

Execution-based evaluation approaches evaluate code qual-
ity based on runtime execution correctness. SPoC [12] eval-
uates functional correctness using the pass@k metric. For
each problem, k code samples are generated, and the problem
is considered solved if any sample passes the unit tests.

Codex [7] tackles the high variance issue in the pass@k metric
by generating n ≥ k samples per task. It counts the number
of correct samples c ≤ n that pass unit tests and calculates
the unbiased estimator. APPS [13] and CodeScore [4] evaluate
functional correctness using the PassRatio metric, calculating
the average fraction of test cases passed.

Execution-based code evaluation approaches require run-
ning the generated code against a predefined set of test
cases and comparing the output with expected results. While
effective, they are inherently limited by scalability constraints.
These limitations are mitigated by automated test case gener-
ation techniques [5], [6], [14]–[17]. However, validating the
generated test cases increases the workload, rendering the
entire execution-based approach impractical. Moreover, run-
ning model-generated code carries security risks and requires
execution within a secure sandbox, which introduce additional
technical complexity.

Prompt-based code evaluation approaches assessed the qual-
ity of generated code using LLMs with single answer grading,
pairwise comparison, reference-guided grading, and chain-of-
thoughts [18]–[20]. They assign rating scores for evaluating
the generated code by comparing it with the given task
description or/and with the reference ground truth code. They
conduct text-to-code or code-to-code comparisons. Inspired by
those methods, in contrast to the above approaches, we use
LLMs as a first-line filter to validate the functional correctness
of the generated code by translating code into text dimension
first and conducting the text-to-text comparison.

III. BASH DATASET

One of the emerging usages of CodeLLMs in AIOps
is to automate incident remediation using automatic script
generation for recommended actions. Bash is widely used
by SREs for incident remediation scripting, primarily due to
the prevalence of Linux-based systems. Hence it is crucial
to evaluate the performance of CodeLLMs on the task of
generating bash scripts. To evaluate LLMs on the task of code
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generation, people calculate execution accuracy (pass@k) [21]
for benchmark datasets across different languages such as
Python, Java, and Go [22]. These datasets contain the problem
statement and associated test cases. When the given code
passes all the test cases for the problem, it is marked as correct.
Creating test cases for Bash scripts is challenging because
Bash commands frequently alter the system. Therefore, veri-
fying the code’s success in completing the given task requires
careful inspection of the system’s state.

We create a new benchmark dataset consisting of 100
tasks for evaluating LLMs on generating bash scripts. The
evaluation of bash scripts typically consists of the following
steps: 1) Prologue: This step consists of creating a container
along with the necessary prerequisites required to evaluate the
code. For example, if the task is to copy a file from directory1
to directory2, a container is created containing directory1 with
the file and directory2. 2) Code Execution. 3) Epilogue: In
this step, we check for any unnecessary system changes 4)
Evaluation: We first check if the code was executed without
any errors. Then we check if the code was able to fulfill the
intended task. 5) Cleanup: The container is closed and the
execution result is returned.

IV. CODESIFT FRAMEWORK

In this section, we outline the methodology of our code
validation framework. Our objective is to check whether the
generated code is correct and its functionally aligned with the
desired behavior specified by the given task1. To accomplish
this, CodeSift acts as a first-line filter to identify functionally
incorrect code. This approach enables automated validation of
code functionality without the need for execution or reference
code, thereby reducing the validation effort and accelerating
the adoption of generated code in real-world applications.
The process is illustrated in Figure 1. CodeSift consists of
two primary evaluation components: (1) syntax correctness
evaluation and (2) semantic correctness evaluation.

In the Syntax Correctness phase, we utilize pre-built syntax
checkers such as ShellCheck [23] and PyLint [24] to detect any
syntactic errors in the generated code. If an error is detected,
the LLM model is prompted with both the error message and
the previously generated code. Our observations indicate that
while the majority of generated code is syntactically correct, in
cases where errors arise, LLM models can often rectify them
when provided with the error message.

After successfully passing syntax evaluation, the code pro-
ceeds to undergo semantic correctness evaluation, which com-
prises of three main phases. In each of these phases, we utilize
the same LLM. Below, we elaborate each phase of semantic
validation.
• Code-to-functionality: In this phase, the generated code is

transformed into a text representation, referred to as code-
func, which encapsulates the core functionality of the code.
To accomplish this, we leverage a pre-trained LLM, capable
of generating the primary purpose and operational logic

1In this context, ”task” refers to programming problems.

corresponding to the provided code. Prompt 1 in Figure 1
is used for this phase.

• Similarity Analysis: Next, we utilize the same pre-trained
LLM to assess the semantic similarity between the code-func
and the task description. The LLM is prompted to determine
whether the code-func can accomplish the intended behavior
specified in the task. Prompt 2 in Figure 1 is utilized to
assess the similarity between the task and code-func. If the
similarity analysis indicates that both the code-func and the
task achieve the same goal, then the code will be labeled as
functionally correct in this phase.

• Difference Analysis: In the third phase, we conduct a
difference analysis by instructing the same LLM model to
identify and examine any discrepancies between the code-
func and the task description. Prompt 3, shown in Figure 1,
is utilized to discern differences within both texts. This
helps in identifying semantic variations between the two
texts, enabling the detection of potential discrepancies or
inconsistencies between the expected and generated output.
If the difference analysis indicates that the code-func and
task produce identical outputs and exhibit no discrepancies,
the code will be labeled as functionally correct during
this phase. This phase complements the similarity analysis
phase by providing additional insights into the functional
correctness of the code, ultimately contributing to a more
comprehensive evaluation.

• Ensemble Synthesis: The ensemble approach involves inte-
grating the outputs of both similarity analysis and difference
analysis to arrive at a more comprehensive evaluation of the
generated code. The generated code is marked as correct by
the CodeSift method only if the similarity analysis indicates
that the code-func and task are similar, and the difference
analysis finds no disparities between them. Consequently,
we synthesize the results from both analyses to comprehen-
sively evaluate the generated code, thereby determining its
functional correctness. If either analysis indicates a deviation
from the task, the code is labeled as functionally incorrect.
It’s important to note that although the model receives
identical inputs for both prompts, its focus varies depending
on the objective. When assessing alignment with the task,
the model emphasizes more on similarities and sometimes
might disregard subtle differences. Conversely, when tasked
with explicitly identifying differences, the model effectively
does so. Therefore, capturing similarities and differences
explicitly is crucial for accurately labeling the generated
code, achieved by combining the outputs of both analyses.

V. EVALUATION

Here, we present the data for evaluation and present the per-
formance of our evaluation framework using various models
and baselines.

A. Experimental Setup

1) Dataset: We evaluate our framework on three datasets,
including HumanEval [7], MBPP+ [25], and Bash (see
Section III). The HumanEval dataset consists of 164 Python
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TABLE I
ACCURACY OF VARIOUS LLM-BASED CODE EVALUATION METHODS. THE BEST PERFORMANCE IS BOLD.

Methods with Code Evaluation Models
Dataset with Code Generation Models

HumanEval (Python) Bash MBPP+ (Python)
Starcoder GPT3.5 Codellama Mistral Codellama Starcoder GPT3.5 Codellama Mistral

Baseline Reference Grading [18] Mistral 70.79 34.70 57.50 59.82 64.2 50.63 29.57 40.35 55.14
ICE-Score [20] Mistral 64.6 50.4 58.8 51.1 61.9 64.1 51.6 50.8 55.1

CodeSift
Mistral 72.92 65.3 67.62 66.76 67.1 62.4 56.6 62.4 57.3
Mixtral 67.56 58 65.42 60.30 61.6 66.9 71.0 51.2 59.6
Llama2-Chat 62.85 51.7 54.63 55.60 59.7 60.4 66.4 59.6 58.8

TABLE II
ACCURACY OF VARIOUS COMPONENTS OF CODESIFT FRAMEWORK.

Methods with Code Evaluation Models
Dataset with Code Generation Models

HumanEval (Python) Bash MBPP+ (Python)
Starcoder GPT3.5 Codellama Mistral Codellama Starcoder GPT3.5 Codellama Mistral

CodeSift’s Similarity Analysis
Mistral 71.40 67.2 73.29 56.34 67.6 63.9 70.6 64.9 54.3
Mixtral 62.92 68 64.20 54.63 66.4 65.9 74.0 67.4 59.3
Llama2-Chat 52.15 71.1 54.57 41.03 63.1 63.9 76.9 64.1 51.3

CodeSift’s Difference Analysis
Mistral 61.03 65.1 55.48 60.1 67.4 60.9 56.3 63.1 56.8
Mixtral 60.36 59 61.89 56.15 59.7 64.1 77.0 51.3 54.3
Llama2-Chat 57.68 51.8 52.68 54.14 55.9 58.1 68.4 61.1 58.6

TABLE III
PRECISION OF VARIOUS LLM-BASED CODE EVALUATION METHODS.

Methods with Code Evaluation Models
Dataset with Code Generation Models

HumanEval (Python) Bash MBPP+ (Python)
Starcoder GPT3.5 Codellama Mistral Codellama Starcoder GPT3.5 Codellama Mistral

Baseline Reference Grading [18] Mistral 62.4 91.6 76.6 34.5 92.5 76.1 91.1 84.8 77.1
ICE-Score [20] Mistral 45.5 71.1 56.4 38 59.8 67.3 80.4 66.1 54.8

CodeSift
Mistral 57.1 75.9 72.9 54.5 73.1 63.9 83.4 69.3 55.3
Mixtral 48.7 77.0 75.3 57 75.3 66.1 85.0 74.2 56.4
Llama2-Chat 41 73.1 52.8 73.1 69.2 66.5 83.2 41.1 55.9

programming problems while MBPP+, which is a refined
subset of the original MBPP dataset [8] by Evalplus [26],
contains 399 python problems.

We analyze the performance of our framework on the
code generated by four prominent models: Starcoder [27],
Codellama 34B [28], ChatGPT [29], and Mistral 7B [30]. For
the HumanEval dataset, we increase the size for evaluation by
sampling 10 solutions for each problem from these models,
using a temperature of 0.2 (except for ChatGPT for which the
temperature was set to 0.8). This results in a total of 1640 task-
code pairs for each model. Similarly, for Bash, we generate
10 scripts for 100 tasks to get a total of 1000. For the MBPP+
dataset, we use greedy decoding to generate 399 task-code
pairs.

2) Task: We evaluate CodeSift on the following two tasks:
i) determining the functional correctness of the given code,
ii) its utility as a filter in code generation pipeline to reduce
incorrect code shown to the user. For the first task, we use
accuracy as the metric to compare the performance of CodeSift
with baseline methods. Establishing ground truth by marking
task-code pairs as correct only if all associated test cases
pass. We then calculate the accuracy by comparing the output
of CodeSift with this ground truth. For the second task, we
report the % of times correct code was shown to the user
post-filtering by CodeSift and baseline methods.

3) Models: We evaluate the performance of three mod-
els: Llama2-Chat 70B [31], Mistral 7B [30], and Mix-

tal 8x7B [32], in CodeSift’s framework for functionality gen-
eration, similarity analysis and difference analysis. All the
models use the sampling decoding method with 0.6 tempera-
ture and 1.2 repetition penalty.

4) Baselines: We compare CodeSift with two baseline
methods: ICE-Score and Reference Grading. ICE-Score de-
termines code correctness by directly comparing it with the
specified task using a Large Language Model [20]. Reference
Grading (as described in the LLM-as-a-judge framework [18])
also considers a correct reference code in addition to the
code and task to improve accuracy. For both methods, we
use prompts specified in their respective frameworks. ICE-
Score assigns scores from 0 to 4, where 4 indicates functional
correctness, while Reference Grading assigns a score of 10 for
perfect alignment with the task. We classify codes as correct
based on these scoring criteria.

B. Results

The results of our experiments are structured around several
key research questions (RQ).

RQ1: How effective is CodeSift at assessing the accuracy
of generated code?

CodeSift’s effectiveness in assessing the accuracy of gener-
ated code is evident from the comparison presented in Table II.
CodeSift provides insights into the fact that LLMs excel in
text-to-text comparisons rather than text-to-code evaluations.
When utilizing Mistral as the backbone, CodeSift outperforms
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TABLE IV
EXAMPLES ILLUSTRATING INSTANCES OF SUCCESSFUL PERFORMANCE AND INSTANCES OF FAILURE OF THE CODESIFT METHOD.

Input Task Generated Code Functionality (code-func) CodeSift’s Evaluation

You are given a list of integers. Write a
function next smallest() that returns the
2nd smallest element of the list. Return
None if there is no such element.

if len(lst) < 2:
return None

else:
return sorted(set(lst))[1]

The code checks whether a list ‘lst’ has
less than two elements, and returns ‘None’
if so; otherwise, it sorts a set made from
the list’s elements, then returns the second
element of the resulting sorted list.

The python code does not
provide any information
about how to find the second
smallest element.

Please write a function to efficiently
compute the n-th element of the fib4
number sequence. Do not use recursion.

if n == 0:
return 0

...
if n > 3:

return fib4(n-1) +
fib4(n-2) + fib4(n-3)
+ fib4(n-4)

↪→
↪→

This recursive function calculates ... until
reaching base cases and sums up their
returned results.

The code being described is a
recursive function for fib4
whereas in
task it is described is a non-recursive

Given length of a side and high return area
for a triangle. return a * h / 2

This function computes and returns the
area of a rectangle with base ‘a’ and
height ‘h’.

The generated code-func is
incorrect as it asserts that the
formula is for a rectangle
instead of a triangle.

Given a string representing a space
separated lowercase letters, return a
dictionary of the letter with the most
repetition and containing the corresponding
count.

if test == '':
return {}

else:
...

count[i] = 1
return count

This function takes a string as an
argument, ... iterates through each word
...its value gets incremented by 1 ...
Finally, this dictionary is returned.

The code generates a frequency
distribution dictionary for every
unique words present in the
input string, while Tasks aims
to find only the word(s)
having maximum repetitions

Print total space used on device overlay
#!/bin/bash
df -h | grep overlay
| awk '{print \$5}'

This bash script uses the ’df’ command ...
and finally, pipes the filtered output to the
’awk’ command which extracts and prints
the 5th column (representing the
percentage of used space).

The given bash script does not
print the total space used on
the device overlay. It only prints
the percentage of used space
on the overlay filesystems.

Copy all .txt files from directory dir1 to
dir2 in the current directory

#!/bin/bash
cp -r /dir1/*.txt /dir2

This Bash script uses the ’cp’ command to
recursively copy all ’.txt’ files from
directory ’/dir1’ to directory ’/dir2’.

Yes, the given code description
achieves the goal stated in the
task.

Count the number of lines in a.txt file in
current directory

#!/bin/bash
wc -l < a.txt

This Bash script uses the ’wc’ (word
count) command with its ’-l’ option to
determine and print the number of lines in
the file named ”a.txt”.

Yes, this bash script achieves
the goal stated in the task by
counting the number of lines in
the specified file using the wc
command with the -l flag.

both baselines for the HumanEval and Bash datasets, while
achieving superior performance with Mixtral for the MBPP
dataset. CodeSift demonstrates superior performance over
ICE-Score across all datasets, highlighting its effectiveness
in text-to-text comparisons. Notably, in the Bash dataset,
ICE-Score tends to label most codes as correct. However,
even with strict scoring criteria, which categorize codes as
incorrect with partial inaccuracies, ICE-Score overlooks cer-
tain differences. In contrast, by converting the code to text
that captures its core functionality, the same LLM model
can discern these differences. Consequently, while ICE-Score
exhibits high recall, its precision is 13% lower compared to
CodeSift. Moreover, in the Python datasets (HumanEval and
MBPP), CodeSift outperforms ICE-Score by an average of 8%.
This observation underscores the significance of the LLM’s
prompt formulation, emphasizing the effectiveness of text-to-
text comparison over text-to-code comparison. Interestingly,
despite the availability of reference code, the reference-based
grading approach does not outperform CodeSift, highlighting
the challenges of code-to-code comparison encountered by
large language models (LLMs). This observation contradicts
the intuitive assumption that having access to more infor-
mation, such as reference codes, would be advantageous.
However, in the realm of code, where multiple methods can
achieve the same functionality, this notion does not hold.
We notice that Reference Grading tends to perform poorly
in cases where the generated code is produced via GPT3.5.

The ratings assigned by Reference Grading for these scenarios
typically hover around 7, indicating partial correctness. Hence
it is labeled as incorrect. Consequently, even though the
generated code may be functionally accurate, it is labeled as
incorrect by Reference Grading due to its scoring criteria.
Note that this issue with Reference Grading does not exist
with other datasets since its performance remains comparable
to CodeSift, suggesting that the overall scoring criteria of
Reference Grading is appropriate.

RQ2: Is there alignment between the assessments made by
CodeSift and human preference in evaluating the correctness
of generated code? To evaluate the practical utility of Code-
Sift, it was deployed in an internal offline code generation
pipeline for catalog creation of automation scripts for a widely-
used AI observability platform. We conducted a user study
involving 3 Subject Matter Experts (SMEs) who were tasked
with generating and evaluating bash scripts using CodeSift.
The experts were asked to assess the code functionality
generated by the CodeSift along with the validation output.
Feedback was received on 105 instances. The SMEs agreed
with the code functionality output 78% of the time and
agreed with the validation output 83% of the time. This study
shows the effectiveness of CodeSift as a code evaluator in
real-world applications but also helps us evaluate the quality
of the different key components of CodeSift - functionality
generation and functional validation, through user feedback.

RQ3: How does CodeSift’s performance change with dif-
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ferent LLMs as evaluators, and what factors influence perfor-
mance variations among LLMs?

Our experiment results reveal performance disparities
among three LLMs as evaluators: Mistral, Mixtral, and
Llama2-Chat, as demonstrated in Table II. Specifically, the
Mistral model consistently outperforms the other models
across the HumanEval and Bash datasets. However, in the
MBPP dataset, Mixtral’s performance is superior. Notably,
when considering precision (in Table III), CodeSift with
Mixtral ensures that users are presented with fewer incorrect
cases, thereby enhancing the overall user experience. While
reference grading exhibits high precision, it suffers from low
recall, resulting in few cases being labeled as correct. In
contrast, CodeSift (with Mixtral), compared to ICE-Score,
which also does not consider reference code, demonstrates
5% to 12% better precision across most scenarios, except in
the case of Starcoder-MBPP. Additionally, when considering
the performance of the individual phases of CodeSift, namely
similarity analysis and difference analysis, we observe similar
performance between Mixtral and Mistral as shown in Table II.
However, Mistral’s similarity analysis can sometimes effec-
tively highlight dissimilarities between the code functionality
and task compared to other models. For instance, in the first
example in Table IV, only similarity analysis using Mistral
model accurately identified dissimilarity between the task and
code-func whereas using other models for similarity analysis
labeled it similar. We observed that the evaluator LLMs exhibit
no bias, as evidenced by Mistral LLM outperforming others
on codes generated by the Mistral model. This indicates the
model’s ability to detect errors in generated code, even when
the code generation and evaluation models are the same.
The accuracy of CodeSift with Llama2-Chat as the backbone
model is generally lower than CodeSift with Mistral and
Mixtral. However, in cases where code is generated by the
GPT3.5 model, CodeSift-Llama’s similarity analysis phase
performs notably well due to the higher execution accuracy
of the GPT3.5 model. Consequently, CodeSift-Llama tends to
label most generated code as correct, potentially overlooking
discrepancies between the code functionality and the task
requirements. This may result in lower overall accuracy, par-
ticularly in detecting incorrect code instances.

RQ4: Can CodeSift effectively detect functional errors in
the generated code, including logical errors, syntax errors,
and missing functions?

One interesting finding of our analysis is that LLMs can
sometimes detect issues with code validity that current vali-
dation schemes (such as unit tests) may fail to capture.This
can be seen in the second example in Table IV. Here the task
mentions “do not use recursion”. The test cases cannot capture
this aspect and hence the generated code using recursion is
deemed correct by the execution evaluation. However, Code-
Sift accurately detects the use of recursion in the generated
code, correctly determining that it does not fulfill the intended
task by stating that “No ... To efficiently compute the n-th
element of the fib4 sequence without using recursion, one
would need to implement an iterative solution instead.” and

suggests using “iterative solution instead”. For bash, in the
fifth example of Table IV, CodeSift was able to recognise that
the 5th row of df command’s out represents used % rather than
the actual value and was able to correctly mark it as incorrect.
One of the reasons for CodeSift’s failure to evaluate the code
correctness is due to incorrect functionality generation. For
example, in the third entry of Table IV, CodeSift fails to
provide the correct output due to a discrepancy between the
code-func and the generated code. This leads to false negatives
and hinders CodeSift’s overall accuracy. Another source of
inaccuracy occurs when the generated code is very close to the
actual intended task with minor discrepencies. For example, in
the sixth entry of table IV, the LLM is unable to determine that
the task has asked to copy from dir1 to dir2 ( both directories
are in the same current directory) where as the code copies
from dir1 to dir2 which results in it claiming that the code is
correct whereas the execution fails due to incorrect directory.

VI. CONCLUSION AND FUTURE WORK

We introduced a novel approach using LLMs for auto-
matic code evaluation, demonstrating its usefulness in the
absence of reference code and test case. Our experimen-
tal results demonstrate the effectiveness of CodeSift across
various datasets and programming languages, outperforming
baseline approaches such as ICE-Score and reference-based
grading. Notably, CodeSift’s ensemble approach, incorporating
both similarity and difference analysis phases, yields the most
reliable outcomes, providing a comprehensive assessment of
code functionality. In the future, we plan to refine and expand
the capabilities of CodeSift by exploring its performance
across a broader range of programming languages. Addition-
ally, we aim to enhance the interpretability and transparency
of the framework’s decision-making process. Explaining the
rationale behind the framework’s assessments in a more in-
tuitive and human-understandable manner can increase trust
in its recommendations, facilitating its adoption in real-world
software development workflows. We’ll also leverage expla-
nations generated by the framework to offer feedback to the
code generation model, ensuring better alignment with task
specifications.

VII. LIMITATIONS

Our framework heavily relies on the functionality generated
for a given code snippet. If this phase fails to capture the
essential elements of the code, there is a higher likelihood of
incorrectly labelling the generated code. Although Mistral and
Mixtral models demonstrate proficiency in capturing essential
functionality, instances of incorrect code functionality gener-
ation can still occur. Also since the outputs of the models are
verbose, it is not always possible to automatically detect the
correctness of the code from the similarity/difference analysis.
Additionally, the explanations provided by the similarity and
difference analysis phases may not always be entirely accurate
upon manual inspection. Future improvements to these expla-
nations could enhance the framework’s efficacy and provide
valuable feedback to the code generation model.
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