
Artemis: Toward Accurate Detection of Server-Side Request
Forgeries through LLM-Assisted Inter-procedural
Path-Sensitive Taint Analysis
YUCHEN JI, ShanghaiTech University, China
TING DAI, IBM Research, USA
ZHICHAO ZHOU, ShanghaiTech University, China
YUTIAN TANG, University of Glasgow, United Kingdom
JINGZHU HE

∗
, ShanghaiTech University, China

Server-side request forgery (SSRF) vulnerabilities are inevitable in PHP web applications. Existing static tools
in detecting vulnerabilities in PHP web applications neither contain SSRF-related features to enhance detection
accuracy nor consider PHP’s dynamic type features. In this paper, we present Artemis, a static taint analysis
tool for detecting SSRF vulnerabilities in PHP web applications. First, Artemis extracts both PHP built-in and
third-party functions as candidate source and sink functions. Second, Artemis constructs both explicit and
implicit call graphs to infer functions’ relationships. Third, Artemis performs taint analysis based on a set of
rules that prevent over-tainting and pauses when SSRF exploitation is impossible. Fourth, Artemis analyzes
the compatibility of path conditions to prune false positives. We have implemented a prototype of Artemis
and evaluated it on 250 PHP web applications. Artemis reports 207 true vulnerable paths (106 true SSRFs)
with 15 false positives. Of the 106 detected SSRFs, 35 are newly found and reported to developers, with 24
confirmed and assigned CVE IDs.

CCS Concepts: • Software and its engineering → Automated static analysis; • Security and privacy →
Web application security.

Additional Key Words and Phrases: PHP, server-side request forgery, taint analysis

ACM Reference Format:

Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He. 2025. Artemis: Toward Accurate Detection
of Server-Side Request Forgeries through LLM-Assisted Inter-procedural Path-Sensitive Taint Analysis. Proc.
ACM Program. Lang. 9, OOPSLA1, Article 128 (April 2025), 29 pages. https://doi.org/10.1145/3720488

1 Introduction
PHP is currently the dominant programming language for building web applications [19]. PHP web
applications allow developers to use server-side requests to interact with third-party applications [66,
69]. Attackers often manipulate user input to send forged server-side requests, leading to the
exploitation of server-side request forgery (SSRF) vulnerabilities. Attackers pretend like the server
sends the request, bypassing access controls such as firewalls that prevent direct access to specific
URLs [11]. Exploitation of SSRF vulnerabilities can lead to severe consequences for applications,
∗Jingzhu He is the corresponding author.

Authors’ Contact Information: Yuchen Ji, ShanghaiTech University, Shanghai, China, jiych2022@shanghaitech.edu.cn; Ting
Dai, IBM Research, Yorktown Height, USA, ting.dai@ibm.com; Zhichao Zhou, ShanghaiTech University, Shanghai, China,
zhouzhch@shanghaitech.edu.cn; Yutian Tang, University of Glasgow, Glasgow, United Kingdom, yutian.tang@glasgow.ac.
uk; Jingzhu He, ShanghaiTech University, Shanghai, China, hejzh1@shanghaitech.edu.cn.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/4-ART128
https://doi.org/10.1145/3720488

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

HTTPS://ORCID.ORG/0000-0002-4828-5338
HTTPS://ORCID.ORG/0000-0003-0257-2304
HTTPS://ORCID.ORG/0000-0002-4543-262X
HTTPS://ORCID.ORG/0000-0001-5677-4564
HTTPS://ORCID.ORG/0009-0005-9448-5022
https://doi.org/10.1145/3720488
https://orcid.org/0000-0002-4828-5338
https://orcid.org/0000-0003-0257-2304
https://orcid.org/0000-0003-0257-2304
https://orcid.org/0000-0002-4543-262X
https://orcid.org/0000-0001-5677-4564
https://orcid.org/0009-0005-9448-5022
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3720488
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3720488&domain=pdf&date_stamp=2025-04-09

128:2 Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He

including denial of service (DoS), leakage of sensitive data, and remote code execution [69]. In
2019, the exploitation of an SSRF vulnerability in Capital One’s service resulted in the leakage
of credit card information for over 100 million consumers [1]. Existing research has explored
the detection and prevention of various vulnerabilities in web applications, including cross-site
scripting (XSS) [34, 49, 55, 58, 77, 81], SQL injection [44, 50], DoS [61, 76], cross-site request forgery
(CSRF) [53, 54, 70, 79], prototype injection [51, 59, 60, 62], business logic flow vulnerabilities [36–
38, 42, 45, 52, 56, 74], and recurring vulnerabilities [72, 73]. However, limited research focuses
on SSRF detection, even though reported SSRF cases are rapidly increasing and the impacts are
severe, as illustrated in Figure 1. Since 2021, SSRFs have been ranked as the top 10 vulnerabilities
by OWASP, based on the occurrence, impacts, incident rates, and number of CVEs [24].

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

Year

0
50

100
150
200
250
300

N
um

be
ro

fC
VE

En
tri
es

Information Leak
Bypass Access Control

Gain Privilege
Remote Code Execution

Denial Of Service

1

Fig. 1. The statistics of SSRFs in recent 10

years with impacts.

Static taint analysis tools [7, 27, 33, 39, 64] are widely
used by developers to detect vulnerabilities in PHP web
applications. The key idea is to track the flow of sources
containing untrusted user input and check whether the
tainted data reaches specified sink functions that send
server-side requests. However, using existing static taint
analysis tools to detect SSRFs in PHP results in high false
positives and false negatives due to four key challenges.
First, existing tools only consider PHP’s built-in

sources and sinks. In our preliminary study, we find that
61% (153 in 250) applications use third-party APIs to han-
dle user input or send server-side requests. Existing tools produce false negatives without consider-
ing third-party sources and sinks. Manually extracting these sources and sinks is time-consuming
and does not scale.
Second, while the implicit call graph construction has been researched recently in statically

typed languages [71], existing PHP static analysis tools often fail to resolve implicit call targets
in their call graphs. For example, magic methods [14], automatically called for undefined object
methods, and dynamic constructs like variable classes and methods [30], are ignored. Failing to
include implicit method calls when constructing call graphs leads to the misdetection of SSRFs.
For example, Rips [39] overlooks method calls because Rips generates call graphs by matching
function signatures, disregarding object-oriented methods. PHPJoern [33] constructs call graphs
by identifying unique method names. When a method name is not unique, i.e., several classes
have methods with the same name, PHPJoern disregards the call. TChecker [64], Phan [7] and
Psalm [27] all generate call graphs using type inference and account for object-oriented methods.
However, if the variable type cannot be statically inferred due to features such as reflection, any
method call on that variable is ignored. Additionally, magic methods are ignored.
Third, existing tools contain both over-tainting and under-tainting rules. Over-tainting rules

overlook data flow paths and string sanitizations, which may result in non-vulnerable code being
flagged as tainted. Under-tainting rules exclude certain data structures, code blocks, and indirect
paths, which can lead to missed vulnerabilities. For example, Rips recklessly marks the return value
of a function as tainted if any argument is tainted, regardless of whether the argument actually
affects the return value through data flows. TChecker treats functions that are not connected in
the call graph as dead code and omits their analysis. However, bypassed functions can be invoked
by reflection in third-party libraries and may contain vulnerabilities. Phan and Psalm taint a string
if any of its components are tainted, even if the string is not a URL.
Fourth, existing tools do not consider path conditions of SSRF exploitation, leading to false

positives. Specifically, two types of path conditions prevent attacker-controlled URLs from reaching
the sink functions. First, the sinks may be on an impossible branch. Second, path conditions may

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

Artemis: Toward Accurate Detection of Server-Side Request Forgeries 128:3

forbid attacker-controlled URLs. Although several existing tools, such as Rips, TChecker, and
Phan, attempt to model specific sanitization rules for sanitizer functions, these tools do not model
path conditions effectively because they solely rely on name matching to recognize sanitizers.

1.1 A Motivating Example

1 $url = $_POST['url'] ; //Source fetches user input

2 ...

3 function getRss($url)

4 {

5 if (!empty($url) && strstr($url , 'blogspot')) {

6 ...
7 $rss = new SimpleCluvPie();
8 ...

9 new $rss->file_class($url , $rss->timeout, 5, null,

$rss->useragent, $rss->force_fsockopen);↩→
10 }
11 }
12
13 class SimpleCluvPie_File {

14 public function __construct($url , $timeout, $redirects,

$headers, $useragent, $force_fsockopen) {↩→
15 $fp = curl_init();

16 curl_setopt ($fp,CURLOPT_URL, $url);//Sink sends request

17 }
18 }

not empty

contains blogspot

Fig. 2. A new SSRF in CommentLuv v3.0.4 whose

taint propagation path from source to sink contains

path conditions and implicit call flows. represents

implicit call flows. represents data flows. rep-

resents (controlled) data flows with path conditions.

We present a previously unknown SSRF vul-
nerability in Figure 2 to illustrate how it is ex-
ploited and how to detect it using static taint
analysis. The application takes a user input
at line #1. The input URL reaches the request-
sending function on line #16 if it is non-empty
and contains the string blogspot. An at-
tacker could exploit the vulnerability by craft-
ing a URL like http://blogspot.evil.com,
where evil.com is a domain controlled by the
attacker and resolves to 127.0.0.1. Thus, this
URL bypasses the string check and causes the
server to send requests to internal addresses.
Exploitation of this SSRF causes sensitive data
leakage.

To detect this SSRF vulnerability using taint
analysis, we taint the built-in source $_POST

that takes a user input at line #1 and the built-
in sink curl_setopt that sends the server-side
request at line #16. We aim to find whether
there exists a feasible path from the tainted
source to sink, like the path indicated by the
red solid lines in Figure 2.
However, existing taint analysis tools fail to detect this vulnerability due to two reasons. First,

the implicit call flow between line #9 and line #14 is obscured by the dynamically assigned class
name $rss->file_class, making it difficult for static analysis tools to build a complete call graph.
As a result, the taint flow terminates at line #9. Second, existing tools fail to consider the path
conditions within an if branch at line #5. The path condition performs a string check on the $url.
Only when $url contains the sub-string blogspot, there exists a feasible path from line #5 to line
#9, making the sink function reachable.

Artemis overcomes the above challenges to detect this SSRF. First, by examining all __construct
methods within the application (keyword new represents a call to the constructor method), Artemis
resolves the implicit call from line #9 to line #14, identifying the correct class (SimpleCluvPie_File)
based on the constructor’s argument count because the constructor on line #14 is the only con-
structor that accepts six parameters. Second, Artemis extracts the path condition and analyzes
the string check imposed by strstr. Artemis confirms that attacker-controlled URLs containing
blogspot reach the sink function, making exploitation feasible.

1.2 Contributions
In this work, we present Artemis1, a holistic taint analysis tool to detect SSRFs in PHP web
applications. Artemis consists of four integrated modules: 1) source and sink identification; 2)

1Artemis is the Greek goddess of the hunt who defeated Apate, the goddess of forgery.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

128:4 Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He

statically inferred call graph construction; 3) rule-based taint analysis; and 4) false positive pruning.
First, Artemis extracts both PHP built-in and third-party source and sink functions. For functions
in third party libraries, Artemis extracts all the functions’ signatures with PHPDoc comments [17].
Artemis then leverages a large language model (LLM) to further determine the candidate sources
and sinks. Second, Artemis constructs the call graphs considering PHP’s dynamically typed
features. Specifically, Artemis builds the implicit caller-callee relationships statically when the
callee is implemented using magic methods or the callee has a variable class or method name.
Third, Artemis performs taint analysis to report candidate paths from sources to sinks based on
augmented propagation rules to prevent over-tainting and under-tainting. Artemis also constructs
implicit data flows to improve detection coverage. Moreover, Artemis applies unique safety string
assurance rules to eliminate the tainted paths along which SSRF exploitation is impossible. Lastly,
Artemis prunes false positives by conducting path condition analysis to eliminate infeasible paths
with incompatible conditions. Specifically, Artemis identifies always unsatisfied conditions and
URL rejection conditions from the extracted path conditions. During result validation, we use a
multi-turn LLM conversation to create concrete SSRF exploits for Artemis’s reported vulnerable
paths. Automatically generating exploits with LLM significantly reduces the manual effort required
to confirm taint analysis results. Artemis makes the following contributions:

• Third-party sources and sinks extraction. We leverage an LLM-assisted method to
augment the set of SSRF sources and sinks by incorporating third-party library APIs besides
PHP built-in functions. We show that 50% SSRF vulnerabilities detected by Artemis are
introduced by third-party libraries.

• Implicit call graph construction schemes.We observe that 13% call targets are implicit
includingmagicmethods, variable class names of callees, and variablemethod names of callees
in widely used PHP applications. We develop a set of implicit call graph construction schemes
through slight over-approximation. The results show that Artemis detects 17 additional
vulnerabilities without introducing any new false positives when incorporating implicit call
graph construction.

• Augmented taint analysis rules. We augment taint propagation rules to prevent over-
tainting and under-tainting. We incorporate PHP array semantics and develop array-specific
taint rules. We develop PHP-specific implicit data flow reconstruction rules. Moreover, we
analyze the strings to eliminate the tainted paths along which SSRF exploitation is impossible.
The results show that the augmented taint rules increase the detection coverage by 4.5% and
reduce the false positives by 90.2% for reported paths.

• SSRF-specific false positive pruning. We develop simple but effective SSRF-specific
schemes to eliminate infeasible paths with incompatible constraints purely statically. Specifi-
cally, we extract path conditions of tainted paths and prune paths with always unsatisfied
and URL rejection conditions to reduce false positives. Our false positive pruning schemes
reduce the number of reported false positive paths from 35 to 15.

We have implemented a prototype of Artemis and evaluated it on 250 PHP web applications. Our
results show that Artemis reports 207 true vulnerable paths (106 true SSRFs) and 15 false positives,
significantly outperforming existing tools. Among the 106 detected SSRFs, 35 are new, and 24 of
them have been confirmed by developers with assigned CVE IDs.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 describes
the design details of the Artemis system. Section 4 presents the experimental evaluation. Finally,
the paper concludes in Section 5. Omitted details of design and evaluation can be found in the full
version of this paper [48].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

Artemis: Toward Accurate Detection of Server-Side Request Forgeries 128:5

2 Related Work
Taint-based Vulnerability Detection. Existing work has designed generic vulnerability detection
tools based on taint analysis. Rips [39] performed taint analysis and built call graphs by matching
function signatures and specified over 900 propagation rules for PHP built-in functions. How-
ever, it ignored object-oriented methods when building call graphs. PHPJoern [33] improved call
graph construction by analyzing object-oriented methods. However, when functions in different
classes had identical names, PHPJoern could not distinguish them and omitted these functions.
TChecker [64] is built on PHPJoern by enhancing call graph construction for object-oriented
methods through type inference. TChecker also added propagation rules for class field variables
during taint analysis. However, if a variable’s type cannot be statically inferred, TChecker ignores
its method calls.WAP [65] utilized supervised machine learning methods to prune false positive
patterns on the vulnerable paths identified by taint analysis, which requires manual effort to collect
vulnerable code samples for training. Compared to prior work, Artemis recognizes third-party
sources and sinks, constructs implicit call graphs, reduces both over-tainting and under-tainting
during taint analysis, and prunes false positives caused by path conditions. As a result, Artemis
detects more SSRFs with significantly fewer false positives and does not rely on manual efforts
such as collecting vulnerable code samples. Existing work has also introduced taint-based detection
tools for specific types of vulnerability. Splendor [75] analyzed database operations in propagation
paths using a heuristic token-matching strategy to detect second-order XSS vulnerabilities in PHP
applications. Torpedo [67] investigated whether retrieved string values from the database could
lead to DoS vulnerabilities using string analysis. In contrast to these tools, Artemis focuses on
SSRF.

Fuzzing-based Vulnerability Detection. Existing work has also explored vulnerability detec-
tion approaches based on fuzzing. For example, Ufuzzer [47] targeted file-upload vulnerabilities by
fuzzing inputs to reach sink functions along the propagation paths identified by symbolic execution
tools. fuse [57] crafted mutation strategies focused on modifying standard upload requests to detect
file-upload vulnerabilities in applications built in various languages. Navex [32] performed taint
analysis to identify vulnerable paths and then fuzzed input to detect vulnerabilities. witcher [80]
increased code coverage during fuzzing by modifying user inputs to generate SQL special characters
and shell commands, aiming to detect SQL injections and code injections that could lead to remote
code execution in applications built with various languages. Atropos [46] used a feedback-driven
approach by modifying the PHP interpreter to generate logs that guide fuzzing mutations to detect
potential vulnerabilities such as XSS and object injection in PHP web applications. Pellegrino et
al. [69] examined the security implications of server-side requests (SSR) and developed a black-box
fuzzing tool named Guenther to detect SSR misuses, including SSRF. However, Guenther requires
manual input of the URL and parameters for fuzzing, which involves significant manual efforts
to crawl and analyze. The recently introduced SSRFuzz [82] detects SSRF in PHP applications
by combining dynamic taint analysis with black-box fuzzing. The authors first examined every
function in the PHP manual to identify all potential sinks. Then, SSRFuzz crawled the application,
dynamically tracking taints and logging HTTP requests and parameters when tainted input reached
sinks. Finally, SSRFuzz applied black-box fuzzing with SSRF-specific mutations and monitoring
rules to identify vulnerabilities. Compared to SSRFuzz, Artemis identifies both PHP built-in and
third-party functions as sources and sinks using LLM and performs static taint analysis. The exploit
is then constructed automatically using LLM from the results of static taint analysis, without the
need for crawling and fuzzing.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

128:6 Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He

Classification
LLMSource/Sink Prompts

Source and Sink Identification

Craft
Prompts

Application Source
Code

Define

Rule-based Taint Analysis False Positive Pruning

Extract
Conds

Identify
& Prune

Taint Propagation Paths

Safety String
Assurance

Rule

Track
Taints

SSRF Reports

Control Flow Graphs

cond1

!cond2phi

return sink

Build
CGs

Statically Inferred Call Graph Construction
Explicit & Implicit Call Graphs

D::__callC::m

$o->m()5

2 1 6

class C {
/** API Document */
public function get(){}

}

System: You will …
User: [Examples]
User: [Input]

7 Build
CFGs 8

Path Conditions

cond1:false
cond2:true 9

$v = $x

func2: 1->3->func1
func1: 1->sink

Implicit
Dataflow

Rule

Third-party Sources
& Sinks

Built-in Sources & Sinks

$s=‘/safe/’;
$safe=$s …;

extract(…);
$req_url;

Taint
Propagation

Rules

Explicit

3

Implicit

$_GET,…

C::get, …
Classify

Always Unsatisfied
Conditions

$s = a;
if ($s == b)

URL Rejection
Conditions

strstr($s, “.”)!=falseValidate4
String
Solver

Fig. 3. The overall architecture of Artemis.

3 System Design
In this section, we present the design details of Artemis. Figure 3 shows the overall architecture of
Artemis. First, Artemis takes the source code of the application as inputs and extracts both PHP
built-in and third-party functions as candidate sources and sinks. Second, Artemis constructs both
explicit and implicit call graphs statically from the source code. Third, Artemis performs a taint
analysis based on constructed call graphs, augmented propagation rules, implicit data flow rules,
and safety string assurance rules to locate tainted paths from candidate sources to sinks. Lastly,
Artemis prunes false positives that are caused by path insensitivity.

3.1 Source and Sink Identification
Source and sink functions are crucial for SSRF detection, where source functions take the user inputs
and sink functions send server-side requests. Artemis identifies them from both PHP standard
libraries and third-party libraries.

Built-in Sources and Sinks.We consider 5 built-in superglobals [18] as sources, including $_GET,
$_POST, $_REQUEST, $_COOKIE, and $_SERVER, because they commonly retrieve user inputs from incoming
requests in PHP language. We follow the practice of previous efforts [82] to extract built-in SSRF
sinks that can handle both network-based URLs (e.g., http:// and ftp://) and file-accessing
URLs (e.g., file:// and phar://) to send server-side requests. By combining results from previous
efforts and existing tools [6, 27, 82], 86 built-in sinks are collected. The 86 built-in sinks include 11
network request sending functions such as curl_init() from cURL and fsockopen() from the socket
library and 75 remote file accessing functions such as file_get_contents().

Third-party Sources and Sinks. Third-party library functions are commonly used as sources
and sinks in modern PHP applications. These libraries simplify development by encapsulating built-
in sources with additional layers of input encoding, validation, and sanitization [5, 8]. Similarly, they
wrap built-in sinks with features like argument validation, response parsing, and error handling
mechanisms such as timeouts and retries [3, 4]. We perform an offline analysis to identify source
and sink functions from third-party libraries. This allows us to cache the results for quick retrieval
during analysis, eliminating the need for repeated reanalysis.

We extract candidate source and sink functions from third-party libraries, with a focus on public
functions with PHPDoc comments [17], as functions lacking PHPDocs are less likely intended
for external use. Next, we prune those source candidates with return2 types of void, int, float,
or bool, as these types of user input cannot effectively manipulate URLs for sending server-side
requests to user-specified but restricted destinations.

2The return types can be extracted from the @return tag in functions’ corresponding PHPDocs.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

Artemis: Toward Accurate Detection of Server-Side Request Forgeries 128:7

Furthermore, we refine the source and sink candidates by utilizing few-shot learning with
GPT-4o [68]. We develop a custom prompt template 3 that includes function names and PHPDocs,
along with one positive and one negative example. We apply the template to each source and sink
candidate with its corresponding function name and PHPDoc and send the prompt to GPT-4o to
classify each candidate function as a source, sink, or neither.
To ensure accuracy, we manually verify the third-party source and sinks generated by GPT-4o

and ensure that no false positives were made at this stage. GPT-4o reports 48 sources and 42 sinks.
After manual verification, we confirm 42 sources and 40 sinks as our third-party source/sink set.

3.2 Statically Inferred Call Graph Construction
To statically construct call graphs in dynamically typed PHP applications, Artemis identifies both
explicit call targets with literal string class and method names, as well as implicit call targets
involving magic methods, variable class names, and variable method names. We design call target
connection strategies to cover all types of PHP method invocations while incorporating acceptable
estimations to address the challenges of statically inferring dynamic type features. In designing our
strategies, we conduct a preliminary statistical analysis of 442,129 method call sites from 55 PHP
applications with reported SSRF CVEs. We apply a slight overestimation in challenging cases with
lower frequencies to ensure that these strategies do not generate substantial false positives but
enhance the efficiency of our analysis. In Section 4.2.1, we demonstrate that ignoring implicit call
targets, despite their infrequent appearance, results in non-negligible false negatives.

Method Invocations. PHP methods can be invoked in seven forms: 1 C::m, 2 $c::$m, 3 $v->m,
4 $v->$m, 5 new C(), 6 new $c(), and 7 call_user_func and call_user_func_array. The first two forms
apply to static methods, the third and fourth apply to instance methods, the fifth and sixth apply to
constructor calls, which are equivalent to $v->__construct(), and the seventh is equivalent to one of
the first four. C denotes a literal class name in static method calls. $c denotes a variable class name
in static method calls. $v denotes the receiving variable in an instance method call. The class name
of $c or $v is literal O, denoted by $c:O or $v:Owhen it can be inferred through type inference [6, 64].
If type inference cannot infer any concrete types, the class name is considered variable, represented
by $v:any. m denotes a literal method name. $m denotes a variable method name.
Explicit Call Target Connection. Artemis identifies explicit call targets by matching their

signatures in both PHP built-in and target application code bases. For function calls, Artemis
considers their signatures as their literal names with the parameter count. For method calls,Artemis
considers their signatures as their class name and method literal name with parameter count and
types. For a static method call in the form of C::m(arg), its signature is C::m(1), where 1 is the
parameter count. For a method call in the form of $o->m(a1,a2) where $o = new O, its signature is
O::m(2). PHP does not support method overloading, meaning that it is not possible to define two
methods of the same name in the same class. As a result, explicit method calls can be resolved
uniquely in one class. When $o is inferred to have multiple types due to dynamic typing [29] or
reflection [28], each candidate class of $o is checked to determine explicit call targets. To address
method inheritance [23] from a parent class to a subclass, Artemis conducts additional matching if
the current method’s signature does not match anything. It iteratively replaces the class name in
the signature with its parent class name until a match is found or reaches the root class without
identifying a valid method. The formal rules to connect explicit calls are denoted as:

$v->m(k), $v:O, ∃C::m(k), C ⊇ O =⇒ C::m

O::m(k), ∃C::m(k), C ⊇ O =⇒ C::m

Implicit Call Target Connection.When a method call target’s method name and class name

3The template can be found in the full version of this paper [48].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

128:8 Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He

1 ClientWrapper:: get ($_GET['uri']);

2
3 class ClientWrapper {
4 /** @var Client */
5 private static $client;
6

7 public static function __callStatic ($m , $o){

8 $url = $o[0];

9 self::$client::{ $m }($url, []);

10 }
11 }
12
13 class Client {

14 public static function get ($url, $args){}

15 ...
16 public static function request($m, $uri, $ops) {}
17 }

(a) CVE-2023-40969 with magic method call and

variable method name .

1 class AJXP_Controller {
2 public static function find($action, $httpVars,

$fileVars) {↩→
3 $callback = getCallback($actionName);

4 $plugin = $callback->getPlugin();

5 $methodName = $callback->get("methodName");

6 return $plugin -> $methodName ($action, $httpVars,

$fileVars);↩→
7 }
8 }
9

10 class HttpDownloader extends AJXP_Plugin {
11 public function switchAction($action, $httpVars,

$fileVars) {↩→
12 ...
13 }
14 }

(b) CVE-2019-15033 with variable class name and

variable method name .

Fig. 4. Examples of implicit call targets. , , and represent the explicit/implicit data flows and

implicit call flows.

are known (e.g., O::m(2)) but its definition in the corresponding class hierarchy is missing, Artemis
considers it as a magic call and searches for magic methods, including __call() and __callStatic(),
within the inheritance chain. The formal rules to connect magic calls are denoted as:

$v->m(k), $v:O, �C::m(k), ∃C::__call, C ⊇ O =⇒ C::__call

O::m(k), �C::m(k), ∃C::__callStatic, C ⊇ O =⇒ C::__callStatic

The definition of a magic method in a class can be treated as the definition of any undefined method
in the same class with a minor twist. Specifically, a magic method takes two parameters—the first
is a string representing the invoked method name, and the second is an array containing the actual
arguments passed to the invoked method. For example, as shown in Figure 4a, the signature of call
at line #1 is ClientWrapper::get(1), which does not match existing method signatures in ClientWrapper.
However, a magic method __callStatic() exists, therefore Artemis builds an implicit call flow from
line #1 to line #7.

When a call target has a literal method name but a variable class name, (e.g., $v::m(k)) Artemis
first searches through all built-in and application classes to find the class methods whose signatures
match the literal method name. If no match is found, but magic methods exist in classes, Artemis
considers the magic methods (i.e., __call() or __callStatic()) in this class as candidate call sites,
regardless of their parameters. The formal rules to connect callees with literal method names but
variable class names are denoted as:

$v->m(k), $v:any, ∃C::m(k), D::m(k), ... =⇒ C::m, D::m, ...

$c::m(k), $c:any, ∃C::m(k), D::m(k), ... =⇒ C::m, D::m, ...

In the motivating example in Figure 2, the implicit call target is a class constructor (__construct())
call at line #10 that has a variable class name $rss->file_class. By searching all classes in the
CommentLuv application, Artemis identifies that the constructor function of the SimpleCluvPie_File

class is the only constructor method with the same number of parameters as the call site, thereby
revealing the implicit call flow.

When a call target has a literal class name but a variable method name (e.g., C::$m(k)), Artemis
searches all the methods in the corresponding class and classes in the class hierarchy. All methods
that have the same number of parameters as the call site (e.g., C:f(k), B::g(k) where B is parent class
of C) are considered as candidate call targets. Moreover, all magic methods in the target classes are

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

Artemis: Toward Accurate Detection of Server-Side Request Forgeries 128:9

considered candidate call sites without parameter checking. The formal rules to connect callees
with literal class names but variable method names are denoted as:

$v->$m(k), $v:O, ∃C::m(k), C::n(k), ..., C ⊇ O =⇒ C::m, C::n, ...

O::$m(k), ∃C::m(k), C::n(k), ..., C ⊇ O =⇒ C::m, C::n, ...

For example, in Figure 4a, the call target at line #14 has a literal class name Client and a variable
method name $method. Artemis can not only identify the call site as Client::get from the aforemen-
tioned magic call flow construction but also search for all methods in the Client class and pinpoint
get as the call site, as it has the same number of arguments as the call target at line #16. In our
experiments, 132 (0.03%) of the call sites are classified under this category. Thus, even though our
method overestimates the parameter count, it does not result in a notable increase in false positives
in detection while enhancing coverage.

When a call target has a variable class name and a variable method name, (e.g., $c::$m), Artemis
searches all methods, including magic call methods, in all built-in and application classes to find
those with the same number of parameters and compatible types as the call target, with magic
methods not requiring parameter checks. Types of formal parameters 𝑡𝑓 and actual parameters 𝑡𝑎
match if a type in 𝑡𝑎 can be cast to a type in 𝑡𝑓 . If a type cannot be inferred, the type mixed is used,
which is compatible with all types. The formal rules to connect callees with variable class names
and variable method names are denoted as:

$v->$m(a1:𝑡𝑎1 , ...an : 𝑡𝑎𝑛), $v:any, ∃C::m(A1:𝑡𝑓1 , ..., An: : 𝑡𝑓𝑛), 𝑡𝑎1 ⊆ 𝑡𝑓1 , . . . , 𝑡𝑎𝑛 ⊆ 𝑡𝑓𝑛 =⇒ C::m

$c::$m(a1:𝑡𝑎1 , ...an : 𝑡𝑎𝑛), $c:any, ∃C::m(A1:𝑡𝑓1 , ..., An: : 𝑡𝑓𝑛), 𝑡𝑎1 ⊆ 𝑡𝑓1 , . . . , 𝑡𝑎𝑛 ⊆ 𝑡𝑓𝑛 =⇒ C::m

For instance, in the example shown in Figure 4b, the call at line #7 involves both an unknown class
name and an unknown method name. Since the method at line #12 takes three parameters, and
the parameter types match4, we consider it a match and treat it as a potential call target. In our
experiments, 88 call sites (0.02%) fall into this category. Therefore, our conservative call resolution,
which over-approximates potential call targets by matching parameter count and type, not only
ensures completeness but also keeps false positives at a manageable level.

Variadic methods [31], which accept varying numbers of arguments, are not included to simplify
our design. In our experiment, each application averages only two such methods, and manual
validation showed that they are not used in SSRFs.

3.3 Rule-Based Taint Analysis
Artemis performs rule-based taint analysis to track the propagation of tainted data within the
constructed call graphs. This analysis traces how attacker-controlled input moves through various
call sites and control flows until it reaches sink functions, leading the server-side requests to
unintended destinations. We design a set of taint propagation rules to handle generic operations
in PHP syntax. To ensure high detection accuracy, our design focuses on mitigating the issues of
over-tainting and under-tainting prevalent in existing tools. Furthermore, we design taint clearance
rules to terminate the tracking of tainted data when it is no longer relevant or has been neutralized.

Language Abstraction.We perform an abstraction5 of the PHP language syntax geared toward
taint analysis 6, specifically investigating the propagation of tainted sources to sink operations,
which may lead to requests being directed to unintended destinations via various control and data
flows. In this abstraction, a PHP program is conceptualized as a series of statements in the static
single assignment (SSA) forms illustrated in Figure 5.
Variable States. For a variable with scalar types, such as string, Artemis considers such

variable 𝑣 as tainted, i.e., 𝑣 : 𝜏 , when 𝑣 directly or indirectly derives its value from a tainted

4The types are inferred by type inference where $action is a string while $httpVars and $httpVars are arrays.
5The full language abstraction description can be found in the full version of this paper [48].
6The syntax abstraction along with the taint propagation is performed on PHP v7.4.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

128:10 Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He

source, inheriting the tainted status. Otherwise, the variable 𝑣 is safe, i.e., 𝑣 : 𝜇, because it is not
influenced by any tainted source in any way. For complex variable types, such as array, Artemis
considers an array variable 𝑎 as tainted, if and only if all elements inside of 𝑎 are tainted, denoted
by 𝑎 : 𝜏 ≡ ∀𝑣 ∈ 𝑎, 𝑣 : 𝜏 . The variable 𝑎 is safe if and only if all the elements inside 𝑎 are safe, denoted
by 𝑎 : 𝜇 ≡ ∀𝑣 ∈ 𝑎, 𝑣 : 𝜇. Otherwise, 𝑎 is partially tainted, i.e., 𝑎 : ≈𝜏 .

𝑣 := 𝑣1 /*variable assignment*/

𝑣 := ⊖𝑣1 /*unary op assignment*/

𝑣 := 𝑣1 ⊕ 𝑣2 /*binary op assignment*/

𝑣 := (𝑇)𝑣1 /*type cast*/

𝑎 := [(𝑘1 ⇒)∗ 𝑣1, · · ·] /*array initialization*/

𝑎[𝑘∗] := 𝑣1 /*array element assignment*/

𝑣 := 𝑎[𝑘] /*assign. from array element*/

foreach(𝑎 as (𝑘 ⇒)∗ 𝑣) {𝑠 } /*foreach loop */

𝑣 := 𝜙 (𝑣𝑡 , 𝑣𝑓) /*branch value merging*/

call
(
𝑚, 𝑣𝑎 → 𝑣𝑓

)
/*v𝑎 /v𝑓 actual/formal arg.*/

𝑣 := return (𝑚, 𝑣𝑟) /*method𝑚 returns var. 𝑣𝑟 */

𝑣 := yield (𝑚, 𝑣𝑟) /*𝑚 returns 𝑣𝑟 in a generator*/

𝑣 := new 𝑇
(
𝑣𝑎 → 𝑣𝑓

)
/*v𝑎 /v𝑓 constructor call*/

Fig. 5. Abstracted PHP language statement syn-

tax in SSA form. * represents an optional ele-

ment.

To represent taint states, Artemis uses a dedicated
data structure T that comprises a triplet of compo-
nents: self, arr𝑠 , arr𝑟 . self represents the tainted
or safe state of the variable itself. arr𝑠 and arr𝑟 are
exclusively applicable for array variables. arr𝑠 tracks
the states of the array elements with statically known
keys. arr𝑟 tracks the states of the array elements
whose keys can only be inferred during runtime ex-
ecution.

To prevent over-tainting, we use two separate taint
structures for each variable. T𝑓 is for local file URLs
and T𝑟 is for request URLs. Unless stated otherwise,
the rules apply to both taint structures.

Taint Propagation: Generalized Rules.When a
statement is evaluated, the states of the correspond-
ing variables are updated. Table 1 (rules 1 - 7) shows
all the generalized taint propagation rules in our lan-
guage abstraction used by Artemis. Among all rules,
those for variable assignment, type casting, and unary
operations are consistent with those used in state-of-the-art approaches [6, 27, 33, 39, 64] and
require no modification.

Upon encountering branching, as seen in if-else structures, Artemis employs the phi assign-
ment rule to merge the states originating from different branches. For composite conditions, e.g.,
if(cond1 && cond2) and switch-case blocks, Artemis flattens them into a series of nested
conditional statements with atomic conditions, e.g., if(cond1){if(cond2)}.
During method calls, states transition from actual arguments to formal arguments, navigate

through the statements within the method body, and eventually extend outward from the method
call to the returned or yielded variable at the caller’s site. In the case of API calls, such as $u =

trim($_GET['q'], where the implementation (e.g., trim()) is inaccessible to Artemis, the propagation
flow simplifies—Artemis copies and merges the states from actual arguments, e.g., $_GET['q'], to
the receiving variable, e.g., $u.

Taint Propagation: Array-Specific Rules. We design propagation rules (8 - 11 in Table 1) for
array-related operations specifically because prior approaches either tend to over-taint a whole
array with one tainted element or overlook taint propagation on the arrays in the foreach loop.

During array initialization, Artemis stores the state of all array elements in either arr𝑠 or arr𝑟
depending on the corresponding keys. When the key has a statically known value 𝑐 , the state of
the element is stored in arr𝑠 under the key 𝑐 . When the value of the key can only be inferred at
runtime, the element’s state is stored in arr𝑟 under a symbolic key denoted by 𝑣𝑘 . In cases where no
explicit key is specified, we interpret the key as an integer that increments by one from the largest
previously used numeric key. If all previous keys are statically known, i.e., arr𝑟 is empty, a concrete
integer 𝑘𝑐 is computed based on existing numeric keys in arr𝑠 , denoted by 𝑘𝑐 = 1 + max

𝑘∈arr𝑠
𝑘 . The

state of the corresponding element is stored in arr𝑠 under 𝑘𝑐 . Otherwise, a new symbolic value

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

Artemis: Toward Accurate Detection of Server-Side Request Forgeries 128:11

Table 1. Generalized and array-specific taint propagation rules in both SSA and AST forms for different PHP

syntax with source code examples. The tainted state is propagated from the 𝑠𝑟𝑐 variable(s) to the 𝑡𝑔𝑡

variable(s).

1 Variable Assign-

ment:

{𝑣1 : 𝜏 }, 𝑣 := 𝑣1 |=
{𝑣 : 𝜏, 𝑣1 : 𝜏 }

ASSIGN

VAR
name:𝑣

var
VAR
name:𝑣1

expr

$d = $_POST ;

2 UnaryOperation:

{𝑣1 : 𝜏 }, 𝑣 :=
⊖𝑣1 |= {𝑣 : 𝜏, 𝑣1 :
𝜏 }

ASSIGN

VAR
name:𝑣

var

UNARY_OP

VAR
name:𝑣1

expr

expr

$c = clone $r ;

3 Binary Operation:

{𝑣1 ∨ 𝑣2 : 𝜏 }, 𝑣 := 𝑣1 ⊕ 𝑣2 |=
{𝑣 : 𝜏, 𝑣1 ∨ 𝑣2 : 𝜏 }

ASSIGN

VAR
name:𝑣

var

BINARY_OP

VAR
name:𝑣1

left
VAR
name:𝑣2

right

expr

$r = $req . $url ;

4 Type Cast:

{𝑣1 : 𝜏 }, 𝑣 := (𝑇)𝑣1 |= {𝑣 : 𝜏, 𝑣1 : 𝜏 },
when𝑇 is object, string, or array.

ASSIGN

VAR
name:𝑣

var

CAST_T

type:𝑇

flag
VAR
name:𝑣1

expr

expr

$urls = (array) $_POST['q'] ;

5 Method Argument:

{𝑣𝑎 : 𝜏 }, call(𝑚, 𝑣𝑎 →
𝑣𝑓) |= {𝑣𝑓 : 𝜏, 𝑣𝑎 : 𝜏 }

FUNC_DECL

𝑚 PARAM_LIST

PARAM
name:𝑣𝑓

...

name stmtsparams
CALL

NAME
name:𝑚

expr

ARG_LIST

VAR
name:𝑣𝑎

args

$c = get($_POST['link']);

function get($url) {...}

6 Method Return/Yield:

{𝑣𝑟 : 𝜏 }, 𝑣 := return/
yield(𝑚, 𝑣𝑟) |= {𝑣 : 𝜏, 𝑣𝑟 : 𝜏 } ASSIGN

VAR
name:𝑣

var

CALL

NAME
name:𝑚

expr

expr

FUNC_DECL

𝑚
name

STMT_LIST

... RETURN/YIELD

VAR
name:𝑣𝑟

expr

stmts

function get(){

return $_GET['name'] ;

}

$filename = get();

8 Foreach Condition:

{ (𝑎 : 𝜏) ∨ (𝑎 : ≈
𝜏, 𝜙 ∉

𝑆) }, foreach(𝑎 as 𝑘 ⇒
𝑣) {𝑆 } |= {𝑣 : 𝜏, 𝑎 : [𝑘 : 𝜏, ...] }

FOREACH

VAR
name:𝑎

VAR

name:𝑘
VAR
name:𝑣

...

expr key value stmts

foreach($u as $k=> $v){}

7 Phi Assignment:

{𝑣𝑡 : 𝜏1, 𝑣𝑓 : 𝜏2 }, 𝑣 := 𝜙 (𝑣𝑡 , 𝑣𝑓) |= {𝑣 : 𝜏1 ∨ 𝜏2, 𝑣𝑡 : 𝜏1, 𝑣𝑓 : 𝜏2 }
IF

IF_ELEM

...
cond

STMT_LIST

ASSIGN

VAR
name:𝑣

var
VAR
name:𝑣𝑡

expr

stmts

IF_ELEM

null

cond
STMT_LIST

ASSIGN

VAR
name:𝑣

var
VAR
name:𝑣𝑓

expr

stmts

IF

IF_ELEM

...
cond

STMT_LIST

ASSIGN

VAR
name:𝑣

var
VAR
name:𝑣𝑡

expr

stmts
if (...) {

$url = 'http://'. $_GET['url'] ;

} else {

$url = $_GET['full'] ;

}

$url ;

if (...) {
$url =

$_GET['full'] ;↩→
}

$url ;

9 Array Initialization:

{𝑣 : 𝜏,𝑚𝑎𝑥 (𝑎𝑖) = 𝑚}, 𝑎 :=
[..., 𝑣] |= {𝑎 : [...,𝑚 + 1 : 𝜏], 𝑣 :
𝜏] }

ASSIGN

VAR
name:𝑎

var

ARRAY

ARRAY_ELEM

null

key
VAR
name:𝑣

value

expr

DIM

VAR
name:𝑎

expr

𝑚 + 1
dim

$a = [1=>..., $url]; $a[2] ;

{𝑣 : 𝜏 }, 𝑎 := [𝑐 => 𝑣, ...] |= {𝑎 :
[𝑐 : 𝜏, ...], 𝑣 : 𝜏 }

ASSIGN

VAR
name:𝑎

var

ARRAY

ARRAY_ELEM

𝑐

key
VAR
name:𝑣

value

expr

DIM

VAR
name:𝑎

expr

𝑐

dim
$a = ["k"=> $url]; $a['k'] ;

{𝑣 : 𝜏 }, 𝑎 := [𝑣𝑘 => 𝑣, ...] |= {𝑎 :
[𝑣𝑘 : 𝜏, ...], 𝑣 : 𝜏 }

ASSIGN

VAR
name:𝑎

var

ARRAY

ARRAY_ELEM

VAR
name:𝑣𝑘

key
VAR
name:𝑣

value

expr

DIM

VAR
name:𝑎

expr
VAR
name:𝑣𝑘

dim
$a = [$key=> $url]; $a[$key] ;

10 Element Assignment:

{𝑣 : 𝜏,𝑚𝑎𝑥 (𝑎𝑖) = 𝑚}, 𝑎[] :=
𝑣 |= {𝑎 : [...,𝑚 + 1 : 𝜏], 𝑣 : 𝜏 }

ASSIGN

DIM

VAR
name:𝑎

expr

null

dim

var
VAR
name:𝑣

expr DIM

VAR
name:𝑎

expr

𝑚 + 1
dim

$a[]= $url ; $a[m+1] ;

{𝑣 : 𝜏, 𝑎 : [...] }, 𝑎[𝑐] := 𝑣 |=
{𝑎 : [..., 𝑐 : 𝜏], 𝑣 : 𝜏 }

ASSIGN

DIM

VAR
name:𝑎

expr

𝑐

dim

var
VAR
name:𝑣

expr

$a[1] = $url ;

{𝑣 : 𝜏, 𝑎 : [...] }, 𝑎[𝑣𝑘] :=
𝑣 |= {𝑎 : [..., 𝑣𝑘 : 𝜏], 𝑣 : 𝜏 }

ASSIGN

DIM

VAR
name:𝑎

expr
VAR
name:𝑣𝑘

dim

var
VAR
name:𝑣

expr

$a[$key] = $url ;

11 Element Retrieval:

{𝑎 : [..., 𝑐 : 𝜏] }, 𝑣 :=
𝑎[𝑐] |= {𝑣 : 𝜏, 𝑎 : [..., 𝑐 :
𝜏] }

ASSIGN

VAR
name:𝑣

var

DIM

VAR
name:𝑎

expr

𝑐

dim

expr

$url = $urls[0] ;

{𝑎 : [𝑘 : 𝜏, ...], 𝑘 ≡
𝑣𝑘 }, 𝑣 := 𝑎[𝑣𝑘] |= {𝑣 :
𝜏, 𝑎 : [𝑘 : 𝜏, ...] =}

ASSIGN

VAR
name:𝑣

var

DIM

VAR
name:𝑎

expr
VAR
name:𝑣𝑘

dim

expr

$key1=$key;

$url = $urls[$key1] ;

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

128:12 Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He

1 $config = array(...
2 'updateUrl' => 'http://...',
3);
4 ...

5 $config['download'] = $_GET['download'] ;

6 ...
7 file_get_contents($config['updateUrl'], ...);

(a) Array with both tainted and safe elements.

1 $urls = $_POST [...];

2 ...

3 foreach ($urls as $imgUrl) {

4 ...

5 readfile($imgUrl , ...);

6 }

(b) CVE-2022-40357 with tainted foreach loop.

Fig. 6. Examples of array-specific taint propagation rules. represents the taint data flow from source to

target .

max(𝑎𝑖) + 1 is created as the key and the state of the corresponding element is stored in arr𝑟 . This
aligns with the definition of arrays in PHP. In all cases, self is maintained to track whether all
array elements have the same tainted state.

During array element assignment, Artemis propagates the state from the assigning variable to
the corresponding array element. If the key is a statically known value 𝑐 , the state of the element
is stored in arr𝑠 under 𝑐 . If the value of the key can only be inferred at runtime, a symbolic key
𝑣𝑘 using the name of the key variable is used to store the state of the corresponding element in
arr𝑟 . In cases where no explicit key is specified and the exact number of elements in the array
is challenging to determine due to loops, a symbolic key max(𝑎) is employed to store the state
of the corresponding element in arr𝑟 . self is also updated to track whether all array elements
have the same tainted state. This design is based on the observation that when this syntax is used,
developers care less about the exact value of the key, rather, they just want to append an element
to the array. Additionally, when used inside loops, all elements have the same taint. Therefore, this
approximation models the propagation of this syntax well.
During array element retrieval (with a given key 𝑘), Artemis propagates the state from the

corresponding array element to the receiving variable. Artemis first checks the array’s self field. If
self is either 𝜏 or 𝜇, indicating that all elements share the same state, the receiving variable adopts
this state. Otherwise, this array is partially tainted, we need to check the arr𝑠 and arr𝑟 fields. If 𝑘 is
statically known, we search for 𝑘 in arr𝑠 , and the state of the receiving variable is updated to match
the state of the element retrieved from arr𝑠 . If 𝑘 can only be inferred at runtime, we search in arr𝑟
for an exact match with 𝑘 and all of 𝑘’s aliases, where an exact match means 𝑘 has the same variable
name and type with the array key. The state is copied to the receiving variable only when a match is
found. For example, in Figure 6a, at line #1-3, the $config array is initialized with the key updateUrl
and a constant string. Therefore, the value is untainted, i.e, self = 𝜇, arr𝑠 = [updateUrl = 𝜇]. At
line #5, the array element with key download is assigned a tainted value, leading to $config being
partially tainted, i.e, self =

≈
𝜏, arr𝑠 = [updateUrl = 𝜇, download = 𝜏]. At line #7, since self is ≈𝜏

and updateUrl exists in arr𝑠 , the result taint is correctly retrieved as 𝜇, i.e., not tainted. Existing
tools [39] mark the whole $config array as tainted after line #5, therefore, the access to the element
at line #7 is also marked as tainted, leading to a false positive.

Upon encountering foreach loops, when all elements in the iterated array 𝑎 are tainted, i.e., 𝑎 : 𝜏 ,
or when the array is partially tainted (i.e., 𝑎 : ≈𝜏) but there are no branching paths in the loop body,
the created value variable will be considered tainted. Although this is a conservative approximation,
it does not lead to false negatives in practice because in cases where a vulnerability path involves
a foreach loop, the array being iterated is typically derived from a source variable or initialized
within a loop, resulting in all elements having the same taint. For example, in Figure 6b, at line
#1, $urls is retrieved from $_POST, which is a built-in source, i.e., selfPOST = 𝜏 . Therefore, $urls is

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

Artemis: Toward Accurate Detection of Server-Side Request Forgeries 128:13

considered tainted, i.e., selfurls = 𝜏 . Inside the foreach loop at line #3, $imgUrl is created by $urls,
thus it is also tainted since selfurls = 𝜏 . We model the foreach loop to avoid under-tainting,
while existing tools [33, 64] fail to maintain taint propagation for variables created inside foreach,
resulting in false negatives.
Taint Continuity: Implicit Dataflow Reconstruction Rule. In addition to applying the

aforementioned taint propagation rules, we must also trace taint propagation in cases where data
flows are implicitly present due to the dynamic features of PHP. We manually go through the PHP
documentation and discover that the built-in extract [12] function creates variables implicitly by
extracting them from an array. Specifically, a variable is created implicitly for every key/value pair
in the first array parameter. The created variable names are derived from the array keys with a
prefix specified in the third parameter. When an extract function is encountered, both the array
and the prefix are recorded. If a variable is subsequently accessed without preceding data flow and
the prefix matches, a synthetic assignment from the array is generated to explicitly establish the
data flow. For example, between two consecutive statements extract($_GET,...,'req'); and return

$req_url;, Artemis interprets an intermediate hidden statement $req_url=$_GET['url']; to uncover
the implicit data flow generated by the extract function.

Taint Clearance: Safety String Assurance Rule. To exploit an SSRF vulnerability, the tainted
string must either be an arbitrary file URL fully controlled by an attacker or a request-sending URL
where the attacker has full control over the IP address to which the request is sent. However, when
tainted strings are concatenated with other strings to form a new string, the resulting string does
not necessarily become a file URL or request-sending URL. Simply tainting the result if any of its
components are tainted leads to over-tainting. Artemis applies safety string assurance rules to
prevent such over-tainting cases where SSRF exploitation is no longer possible. In Section 4.2.2, we
demonstrate that these safety string assurance rules are crucial in reducing over-tainting and false
positives.

We take string concatenation in the form of $v=$v1.$v2 without loss of generality to illustrate our
rules. Other string manipulations, such as interpolation and formatting, can be converted to equiv-
alent string concatenation forms when handling safety strings. For example, string interpolation
such as $v="http://$domain" is equivalent to $v="http://".$domain. After the concatenation step, for
𝑇𝑓 (taint for file URLs), we consider a variable 𝑣 to be untainted, represented as 𝑇𝑓𝑣 = (𝜇, [], []), if
𝑣1 and 𝑣2 are not both tainted. This is because if any part of the string is not attacker-controlled,
the concatenated file path cannot be arbitrary. For 𝑇𝑟 (taint for request-sending URLs), the taint
status of 𝑣1 is first checked. If 𝑣1 is tainted as part of a request URL (i.e., 𝑇𝑓𝑣1 is set), then 𝑣 is also
considered tainted. If 𝑣1 is not tainted, its value is evaluated. If 𝑣1 is a constant or literal string,
we compare the value of 𝑣1 against valid URL schemes and also use a URL parser to parse 𝑣1. If
𝑣1 represents a valid scheme (e.g., http or tcp) or appending 𝑣2 could form a new host (e.g., $v
= "http://a" . $v2 and $v2=".evil.com"), the taint depends only on 𝑣2, because now 𝑣2 determines
the IP that the request is sent to. Otherwise, 𝑇𝑟 remains untainted. This approach ensures that
the tainted input affects the domain segment of the URL, controlling the IP address to which the
request is sent as defined by the standard [35]. In other cases, the result follows conventional binary
operation rules, where the result is tainted if any part of the string is tainted.

3.4 False Positive Pruning
The rule-based taint analysis described in Section 3.3 is path insensitive, which can lead to false
positives by reporting infeasible SSRF propagation paths. This occurs when the code conditions
always cannot be satisfied or reject URLs. For instance, in Figure 7, we identify the tainted path
from the source downloadFile at line #8 to the sink fopen at line #5. However, there is a conditional
check at line #2 along the path. When the attacker manipulates $d['filename'] to be a URL, the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

128:14 Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He

1 private function downloadFile($d) {
2 if (!$this->isFilenameValid($d['filename']))
3 throw ...;
4 else {
5 fopen($d['filename'], ...) ; //sink
6 }
7 }
8 $this->downloadFile($_REQUEST);

1 public function isFilenameValid($f) {
2 // ...
3 foreach (['/', '\0'] as $char)
4 if (strpos($f, $char) !== false)
5 return false;
6 // ...
7 return true ; //Expected return stmt
8 }

Block#1(@2)

𝑣1 :=$d[’k’]
𝑣2 := isFilenameValid()

𝑣3 := !𝑣2
JumpIf(𝑣3)

Block#2(@3)

throw ...

Block#3(@5)

𝑣4 :=$d[’k’]
fopen($v4)

Jump

Block#4(@7)

return

if

else

(a) CFG of downloadFile

Block#1(@3)

𝑣1 :=[’/’, ’\0’]
IterReset($v1)

Jump

Block#2(@3)

𝑣2 :=IterValid(𝑣1)
JumpIf(𝑣2)

Block#3(@4)

𝑣3 :=IterValue(𝑣2)
𝑣4 := strpos(𝑓 , 𝑣3)
𝑣5 := 𝑣4!=false
JumpIf(𝑣5)

Block#4(@5)

return(false)

Block#5(@7)

return(true)

if

else

else

if

(b) CFG of isFilenameValid

Fig. 7. An example of false positive caused by path condition , with the source code block and the correspond-

ing CFG in SSA form. represents the (backward) control dependency edges. represents the block

linkage in a CFG.

user-defined function isFilenameValid always returns false because the URL contains a forward
slash (/). It means that SSRF exploitation is impossible along the path, which should be flagged as a
false positive. We refer to the conditional checks on the taint propagation paths as path conditions.

To prune infeasible propagation paths, we perform a lightweight static analysis with a focus on
SSRF-specific string conditions. We start by extracting a consolidated list of conditions for each
tainted path. Next, we prune paths that contain conditions that are always unsatisfied or reject
URLs before they reach the sensitive sink. By modeling and checking only conditions that are
relevant in SSRF, we prune path-related false positives without expensive symbolic execution.
Section 4.2.2 shows that analyzing path conditions is important in reducing false positives.
Path Condition Extraction. Given a taint propagation path from source to sink (Section 3.3),

Artemis identifies all function invocations along the path, extracts path conditions from each
function’s control flow graph (CFG), and merges these conditions into a consolidated path condition
list. For each function in a taint path, Artemis identifies the sink block containing the sink function
invocation (leaf node in the call graph) or the end block containing a return statement (intermediate
node in the call graph). Starting from the identified sink or end block, we conduct a backward
dependency analysis by iteratively traversing preceding blocks until we reach either the entry block
of the CFG or a previously visited block, which indicates the presence of a loop. Artemis extracts
condition labels (i.e., true/false) derived from dependence edges. Artemis connects the traversal
flow using the constructed call graphs (Section 3.2) whenever it encounters function calls. It merges
the extracted conditions from each function in the call graph by applying the corresponding logical
operators (AND/OR) according to the control flow dependencies.

We use the example in Figure 7 to illustrate howArtemis extracts interprocedural path conditions
within a tainted path. Given a taint propagation path where the tainted source $_REQUEST is passed
as an argument to the downloadFile() function at line #8 and subsequently flows to the sink function
fopen() at line #5, Artemis identifies Block #3 within the downloadFile() function as the tainted block
where the sink function is invoked. Starting from Block #3, Artemis tracks back to Block #1 with an
edge labeled as false, indicating that: 1) a path condition is defined in Block #1, 2) branching occurs
at Block #1, and 3) the path from Block #1 to Block #3 is taken when the condition is false. Artemis

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

Artemis: Toward Accurate Detection of Server-Side Request Forgeries 128:15

Table 2. String checking functions and core translation rules. s represents the string from user input, c and p
represents constants used in condition.

Function Type Translation

in_array(s,a) Allowlist /

array_key_exists(s,a) Allowlist /

strpos(s,c) URL-blocking (str.indexof s c 0)

stripos(s,c) URL-blocking (str.indexof (str.to_lower s) (str.to_lower c) 0)

strstr(s,c) URL-blocking (str.contains s c)

stristr(s,c) URL-blocking (str.contains (str.to_lower s) (str.to_lower c))

preg_match(p,s) URL-blocking (str.in_re s (re.from_ecma2020 p))

preg_match_all(p,s) URL-blocking (str.in_re s (re.from_ecma2020 p))

then retrieves the source code line number (i.e., 2) from Block #1 to extract the condition’s source
code as !$this->isFilenameValid($d['filename']). Artemis considers the path label to normalize the
path condition from Block #1 to Block #3 as isFilenameValid() returning true. Artemis then locates
the definition of isFilenameValid() function from the constructed call graphs and identifies Block
#5 as the target block, which is the only block that returns true. Starting from Block #5, Artemis
tracks back to Block #2 with an edge labeled as false. Artemis then retrieves the source code
line number (i.e., 3) from Block #2 to extract the condition’s source code as foreach (['/', '\0'] as

$char), indicating that: 1) the path from Block #2 to Block #5 marks the end of a loop, and 2) any
condition within the loop that would cause early termination must be negated; otherwise, the path
from Block #2 to Block #5 would be infeasible. From Block #2, Artemis backtracks every path until
it reaches Block #2 again and identifies that branching and condition definition occur at Block #3.
Artemis then retrieves the source code line number (i.e., 4) from Block #3 to extract the condition’s
source code as strpos($f, $char) !== false. With negation, Artemis normalizes the path condition
from Block #2 to Block #5 in isFilenameValid() function as strpos($f, $char) == false. It is also the
path condition from the source $_REQUEST to the sink fopen() in the downloadFile() function.
Always Unsatisfied Conditions. Artemis prunes unreachable paths after identifying that

their conditions are always unsatisfied, including 1) parameter and argument mismatch; and 2)
conflicting logic. When a condition depends on a function parameter but the passed argument
at the call site does not match, it results in an unsatisfiable condition. We denote the condition
on formal argument involving constants as 𝐶 (𝑣 𝑓 , 𝑆1) and the called method is𝑚 with constant
parameter 𝑆2, then if:

𝐶 (𝑣 𝑓 , 𝑆1) ∧ call(𝑚, 𝑆2 → 𝑣 𝑓) ≡ ⊥
, the path is pruned. For example, if a function checks whether a parameter equals a specific value
(e.g., if($param === "A")), but the passed argument is "B", the condition is always false. Conflicting
logic arises when contradictory conditions exist, such as in the cases of if ($x == 10) and if ($x !=

10), which are mutually exclusive. Formally, for conditions 𝐶1 (𝑣) and 𝐶2 (𝑣) that checks variable 𝑣
with statically known conditions, if:

𝐶1 (𝑣) ∧𝐶2 (𝑣) ≡ ⊥
then the path is pruned.
URL Rejection Conditions. Artemis prunes secure paths where attacker-controlled URLs

cannot reach the sink due to path conditions that perform string checks. Specifically, two types of
path conditions need to be identified: 1) allowlist checks, where tainted user input is restricted to a
predefined list of values; and 2) string checks that block URLs from passing because URL-required
characters are disallowed, such as / or .. To accurately identify the two types of conditions, first,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

128:16 Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He

Artemis identifies potential conditions by locating related functions shown in Table 2. Allowlist
checks are recognized directly by their function names while URL-blocking string checks are
modeled based on their logic. Conditions involving 1) external variables (e.g., class properties
or globals) or 2) non-constant variables not directly derived from user input (e.g., from function
calls) are excluded. Then, each string check is translated into a string constraint, with the core
rules for this process outlined in Table 2. Lastly, Artemis uses the OSTRICH SMT solver [41] to
verify whether valid URLs in the form of protocol://domain.tld can satisfy the constraints. For
example, in Figure 7, the condition on line #4 in isFilenameValid uses strpos, making it a candidate
for URL rejection. The conditions are modeled as string constraints (assert (= (str.indexof
w char 0) (- 1))) where char can be / and \0. Constraint for valid URL w is modeled by
regular expression. Then, we use the SMT solver to determine that the union of the constraints is
unsatisfiable for a valid URL. Therefore, we mark the path as a false positive.

4 Evaluation
In this section, we present our experimental evaluation. We first evaluate the detection capability of
Artemis against five generic static PHP vulnerability detection tools based on taint analysis. Next,
we evaluate the generalizability of the source and sink identification module, the performance of the
call graph construction module, and finally, the detection speed and scalability of Artemis. We have
implemented a prototype of Artemis. The source/sink identification module is developed using
the GPT-4o-2024-08-06 model [68] with default configurations, accessed via API. The maximum
output token length is set to 1024. The call graph construction and rule-based taint analysis module
are built on top of Phan [6, 7], which utilizes the php-ast extension [15] to extract abstract syntax
trees (ASTs). The false positive pruning module is built on top of the Joern framework [13]. All
experiments are run on a system with an Intel i7-10700 CPU with 8 cores, 32GB RAM, and running
64-bit Ubuntu 22.04 with kernel version 5.15.0. The applications are set up using the PHP version
recommended in their respective installation documentation.

4.1 Methodology
4.1.1 Target Applications and Vulnerability Collection. We select target applications based on two
criteria. First, we collect vulnerable applications from the Common Vulnerabilities and Exposures
(CVE) database [10] to evaluate whether Artemis is able to detect known SSRFs. Using keywords
such as “server-side request forgery” and “SSR”, we filter applications that meet the following
conditions: 1) the application is written in PHP language and open-source, and 2) the CVE reports
a true SSRF vulnerability in the application code. From this list, we prioritize frequently occurring
applications and download both the vulnerable and latest versions for evaluation. We collect 55
applications with reported SSRFs. Second, we gather popular open-source PHP applications from
GitHub (via the Awesome-Selfhosted project [9]) and the WordPress plugin repository [16] to
assess Artemis’s ability to discover new SSRFs. We sample a total of 195 applications. We use the
latest available versions at the time of the experiment. In total, we collected 250 PHP applications
using the two criteria. The applications have varying complexity, with line of code (LoC) ranging
from 780 to 872506, with an average of 173049.
The collected SSRF CVEs cover a variety of root causes, including 1) missing URL validation,

where user-provided URLs are used without validation; 2) missing URL segment validation, where
user input modifies parts of the URL’s domain without validation; 3) incomplete input validation,
where basic checks are bypassed with attacker-controlled domains; and 4) flawed input validation,
where allowlists are used but flawed, leading to bypasses. SSRFs usually have severe impacts on
running applications. The collected CVEs cause impacts including 1) access control bypass; 2)
sensitive data leakage; 3) denial of service (DoS); 4) privilege escalation; and 5) arbitrary remote

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

Artemis: Toward Accurate Detection of Server-Side Request Forgeries 128:17

Table 3. Feature comparison of Rips, PHPJoern, TChecker, Psalm, Phan, and Artemis.

Feature Rips PHPJoern TChecker Psalm Phan Artemis

Sources/Sinks PHP built-in PHP built-in PHP built-in PHP built-in PHP built-in PHP built-in and
third-party

Explicit Calls
Unique function
name matching

Unique
function/method
name matching

Type inference Type inference Type inference Type inference

Implicit Calls ✗ ✗ ✗ ✗ ✗
Relaxed implicit call
graph construction

Taint Propagation
Generalized rules,
sanitizer functions

Generalized rules,
sanitizer functions

Generalized rules,
sanitizer functions

Generalized rules,
sanitizer functions

Generalized rules,
sanitizer functions

Generalized rules,
refined array rules,
implicit dataflow
rules, and safety
string analysis

False Positive

Pruning
✗ ✗ ✗ ✗ ✗

Path condition
analysis

code execution. For example, the SSRF in Figure 6b results in data leakage as the response of the
crafted request is returned to the attacker. In contrast, the SSRF in Figure 2 allows attackers to
circumvent access controls to communicate with internal network hosts.

4.1.2 Alternative Approaches. We compare Artemis with five generic static PHP vulnerability de-
tection tools based on taint analysis, i.e., Rips [39], TChecker [64], PHPJoern [33], Psalm [27]
and Phan [7]. We summarize their analysis features and compare them withArtemis in Table 3. To
tune the five generic tools for SSRF detection, we configure themwith the same PHP built-in sources
and sinks as Artemis to ensure a fair comparison. For call graph construction, Rips matches only
function names, while PHPJoern matches unique function and method names. TChecker, Psalm,
and Phan employ type inference for explicit calls, but none of the five tools handle implicit calls.
TChecker starts call graph construction and taint analysis from the top-level function of each PHP
file, while the other tools start their analysis from each defined function. In taint propagation, the
five tools use generalized taint rules (rules 1 - 7 in Table 1) same as Artemiswith manually defined
sanitizers for non-SSRF vulnerabilities, such as SQL injection and XSS. Rips ignores object-oriented
features, therefore if the right-hand side includes objects, the taint is not propagated for rules 1 - 4
in Table 1. None of the five tools prunes false positives with path condition analysis as Artemis
does.
To assess the impact of the third-party sources and sinks, we extend all alternative approaches

by incorporating both built-in and third-party sources and sinks identified by Artemis, resulting
in five modified tools: Rips∗, TChecker∗, PHPJoern

∗, Psalm∗, and Phan
∗.

To assess the impact of the false positive pruning module in Artemis, we integrate it into
TChecker, Psalm and Phan which have type inference support. We refer to these modified
versions as TChecker†, Psalm†, and Phan

†.

4.1.3 Ablated Versions. To evaluate the contribution of each component in Artemis, we conduct
an ablation study. We systematically remove one module from taint analysis at a time to assess the
module’s impact on detection performance. We compare Artemis against four ablated versions.
Artemis

𝑎 . We remove the third-party source/sink identification module from Artemis. Specifi-
cally, we only use the PHP built-in functions as the source and sink functions.

Artemis
𝑐 . We remove the statically inferred call graph construction module from Artemis.

Specifically, we only use the explicit call graph construction in Phan.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

128:18 Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He

Artemis
𝑡 . We remove the rule-based taint analysis module from Artemis. Specifically, we use

the taint propagation rules in Phan.
Artemis

𝑝 . We remove the false positive pruning module from Artemis. The results from the
rule-based taint analysis module are directly reported as candidate SSRFs.

4.1.4 Exploit Generation. Creating exploitsmanually from taint analysis reports is a time-consuming
process requiring domain expertise. We automate the exploit generation process by leveraging
LLM with a multi-turn conversation to generate exploits. The conversation prompt template can
be found in the full version of this paper [48].

Due to context limitations in LLMs [22], we equip them with tools for dynamic context retrieval
like code search, extraction, execution, and database queries [26]. When additional context is
required, the LLM generates tool calls that convert to PHP function calls that gather information
and return it to the LLM. In our implementation, we choose GPT-4o as the backbone LLM because
1) it has a relatively large context window; and 2) it has the best built-in support for tool calling.

The exploit generation is complex, therefore we break it down into three subtasks:
Payload Generation. The LLM identifies the user input type (e.g., GET/POST data, cookies)

and generates the payload needed to trigger SSRF. For example, it may generate a POST request
with the key url containing blogspot in value for our motivating example in Figure 2.

Route Formation. The LLM determines the URL route to reach the vulnerable code by analyzing
routing code or framework knowledge. For instance, in Figure 8, the LLM identifies the correct
route to the vulnerable function via domain knowledge about the CakePHP [2] framework it uses.

Value Inference. The LLM infers additional required field values, such as valid user IDs, which
are necessary for the request to be accepted. For example, in Figure 8, the LLM needs to fetch a
valid product associated with a manufacturer for the request to be accepted.

To enhance accuracy, we automate exploit testing on a live server, logging responses and
execution traces. If an exploit fails, the feedback is used to refine it iteratively with the LLM.
Unresolved cases after three attempts are marked as undetermined and reviewed manually. During
the manual review, we revise the payload, route, and fields generated by the LLM. We then test the
corrected exploit on a server to confirm its validity as a true or false positive.

4.1.5 Result Validation. If a path is automatically exploited by the LLM, it is marked as a true
positive (TP). Otherwise, wemanually verify if it is a TP or a false positive (FP) andwrite exploitation
payloads for TPs. For reports from alternative methods, we check for overlap with TP reports from
Artemis. Overlapping reports are marked as TPs, while non-overlapping ones undergo manual
code review to identify false positives.

Note that multiple true positive paths can share the same patch, so they are reported as a single
vulnerability, a common practice in CVE reporting. For example, in CVE-2018-1000138, the function
getFromWeb is used to fetch web resources with three different sources, creating three true positive
paths. However, as the patch is applied in the getFromWeb function, the CVE report combines all
three paths under a single CVE.

4.2 SSRF Detection Results
4.2.1 True Positives. Table 4 and Table 5 present the detection accuracy results for Artemis,
Rips, PHPJoern, TChecker, Psalm, Phan, and ablated versions of Artemis. Overall, Artemis
significantly outperforms other static analysis tools, detecting up to 5 times more SSRFs. In total,
Artemis identifies 207 true positive paths, corresponding to 106 true positive SSRFs. Among the
106 SSRFs, 35 are newly discovered by Artemis. Artemis generates exploits for 194 of 222 detected
paths, covering 99 of 106 SSRFs. Among the 28 remaining paths, 15 are confirmed as false positives

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

Artemis: Toward Accurate Detection of Server-Side Request Forgeries 128:19

Table 4. The comparision of detected number of TP paths by Artemis, Rips, PHPJoern, TChecker, Psalm,

and Phan on 106 SSRF vulnerabilities (71 known and 35 new). ✗ means no TP path is detected for the

corresponding vulnerability.

CVE/Vuln ID A
rt

em
is

R
ip
s
PH

PJ
oe

rn

TC
h
ec

ke
r

Ps
al

m

Ph
an

1 CVE-2015-7816 1 1 ✗ ✗ 1 1

2 CVE-2016-10926 1 1 1 1 1 1

3 CVE-2016-10927 1 1 1 1 1 1

4 CVE-2016-7964 1 ✗ ✗ ✗ 1 1

5 CVE-2016-9417 2 ✗ ✗ ✗ 2 2

6 CVE-2017-1000419 1 ✗ ✗ ✗ ✗ ✗

7 CVE-2017-10973 1 1 ✗ 1 1 1

8 CVE-2017-14323 1 1 1 1 1 1

9 CVE-2017-16870 1 ✗ 1 ✗ 1 1

10 CVE-2017-7566 1 ✗ ✗ ✗ ✗ ✗

11 CVE-2017-9307 3 3 3 3 3 3

12 CVE-2018-1000138 3 3 3 3 3 3

13 CVE-2018-11031 1 ✗ ✗ ✗ ✗ ✗

14 CVE-2018-14514 6 ✗ ✗ ✗ ✗ ✗

15 CVE-2018-14728 2 2 2 2 2 2

16 CVE-2018-15495 2 2 2 2 2 2

17 CVE-2018-16444 1 ✗ ✗ 1 1 1

18 CVE-2018-18867 2 2 2 2 2 2

19 CVE-2018-6029 3 ✗ ✗ ✗ ✗ ✗

20 CVE-2018-9302 4 4 4 4 4 4

21 CVE-2019-11565 3 ✗ ✗ ✗ ✗ ✗

22 CVE-2019-11574 4 ✗ ✗ ✗ 4 4

23 CVE-2019-11767 1 ✗ ✗ ✗ ✗ ✗

24 CVE-2019-12161 7 ✗ ✗ ✗ ✗ ✗

25 CVE-2019-15033 1 ✗ ✗ ✗ ✗ ✗

26 CVE-2019-15494 1 ✗ ✗ ✗ ✗ ✗

27 CVE-2020-10212 3 3 3 3 3 3

28 CVE-2020-10791 1 ✗ ✗ ✗ ✗ ✗

29 CVE-2020-14044 1 ✗ 1 ✗ 1 1

30 CVE-2020-20341 2 ✗ ✗ ✗ ✗ ✗

31 CVE-2020-20582 4 ✗ ✗ ✗ 4 4

32 CVE-2020-21788 2 ✗ ✗ ✗ ✗ ✗

33 CVE-2020-23534 1 ✗ ✗ ✗ ✗ ✗

34 CVE-2020-24063 1 ✗ 1 1 1 1

35 CVE-2020-25466 2 2 ✗ ✗ ✗ ✗

36 CVE-2020-28043 1 ✗ ✗ ✗ ✗ ✗

37 CVE-2020-28976 1 1 1 1 1 1

38 CVE-2020-28977 1 ✗ 1 1 1 1

39 CVE-2020-28978 1 ✗ 1 1 1 1

40 CVE-2020-35313 3 2 2 ✗ 2 2

41 CVE-2020-35970 1 ✗ ✗ ✗ 1 1

42 CVE-2021-24150 2 ✗ ✗ ✗ ✗ ✗

43 CVE-2021-24371 2 ✗ ✗ ✗ ✗ ✗

44 CVE-2021-27329 2 ✗ ✗ ✗ ✗ ✗

45 CVE-2021-28060 1 ✗ ✗ ✗ 1 1

46 CVE-2021-4075 3 ✗ ✗ ✗ ✗ 3

47 CVE-2022-0768 3 ✗ ✗ ✗ ✗ ✗

48 CVE-2022-1037 1 ✗ ✗ ✗ ✗ ✗

49 CVE-2022-1191 1 1 1 1 1 1

50 CVE-2022-1213 1 1 1 1 1 1

51 CVE-2022-1239 1 ✗ ✗ ✗ 1 1

52 CVE-2022-31386 4 3 4 4 4 4

53 CVE-2022-31830 1 1 1 ✗ 1 1

CVE/Vuln ID A
rt

em
is

R
ip
s
PH

PJ
oe

rn

TC
h
ec

ke
r

Ps
al

m

Ph
an

54 CVE-2022-38292 1 ✗ ✗ ✗ ✗ ✗

55 CVE-2022-40357 1 ✗ ✗ ✗ ✗ ✗

56 CVE-2022-41477 1 1 1 1 1 1

57 CVE-2022-41497 3 2 3 3 3 3

58 CVE-2022-46998 1 ✗ ✗ ✗ 1 1

59 CVE-2022-47872 4 ✗ ✗ ✗ 4 4

60 CVE-2023-1938 1 ✗ ✗ ✗ ✗ ✗

61 CVE-2023-1977 1 ✗ ✗ ✗ ✗ ✗

62 CVE-2023-2927 6 ✗ ✗ ✗ ✗ 6

63 CVE-2023-34959 1 ✗ ✗ ✗ 1 1

64 CVE-2023-3744 1 1 1 1 1 1

65 CVE-2023-39108 2 ✗ 2 ✗ 2 2

66 CVE-2023-39109 2 ✗ 2 ✗ 2 2

67 CVE-2023-39110 1 ✗ 1 ✗ 1 1

68 CVE-2023-40969 1 ✗ ✗ ✗ ✗ ✗

69 CVE-2023-41054 1 ✗ ✗ ✗ 1 1

70 CVE-2023-41055 1 ✗ ✗ ✗ 1 1

71 CVE-2023-4651 1 1 ✗ ✗ 1 1

72 BMLT-1 4 ✗ ✗ ✗ ✗ ✗

73 BN-1 1 ✗ ✗ ✗ ✗ ✗

74 CHL-1 2 ✗ ✗ ✗ ✗ ✗

75 COL-1 1 ✗ ✗ ✗ ✗ ✗

76 CR-1 10 ✗ ✗ ✗ ✗ ✗

77 CVE-2023-38515 1 1 ✗ ✗ 1 1

78 CVE-2023-46725 1 ✗ ✗ ✗ ✗ ✗

79 CVE-2023-46730 1 ✗ ✗ ✗ ✗ ✗

80 CVE-2023-46736 1 ✗ ✗ ✗ ✗ ✗

81 CVE-2023-48005 2 2 2 2 2 2

82 CVE-2023-48006 1 ✗ ✗ ✗ ✗ ✗

83 CVE-2023-4878 1 1 1 1 1 1

84 CVE-2023-49159 2 ✗ ✗ ✗ ✗ ✗

85 CVE-2023-49746 2 ✗ ✗ ✗ ✗ ✗

86 CVE-2023-50374 1 ✗ ✗ ✗ ✗ ✗

87 CVE-2023-50621 4 ✗ ✗ ✗ ✗ ✗

88 CVE-2023-50622 1 ✗ ✗ ✗ 1 1

89 CVE-2023-51676 4 ✗ ✗ ✗ ✗ ✗

90 CVE-2023-52233 1 ✗ ✗ ✗ ✗ ✗

91 CVE-2023-5798 1 ✗ ✗ ✗ ✗ ✗

92 CVE-2023-5877 1 1 1 1 1 1

93 CVE-2024-22134 3 ✗ ✗ ✗ ✗ ✗

94 CVE-2024-32430 1 ✗ ✗ ✗ ✗ ✗

95 CVE-2024-33629 2 ✗ ✗ ✗ ✗ ✗

96 CVE-2024-35633 1 ✗ ✗ ✗ ✗ ✗

97 CVE-2024-35635 1 ✗ ✗ ✗ ✗ ✗

98 CVE-2024-35637 1 ✗ ✗ ✗ ✗ ✗

99 CVE-2024-37098 2 ✗ ✗ ✗ ✗ ✗

100 CVE-2024-38791 1 ✗ ✗ ✗ ✗ ✗

101 IC-1 4 ✗ ✗ ✗ ✗ ✗

102 MAC-1 6 ✗ ✗ ✗ ✗ ✗

103 NONE-1 3 ✗ ✗ ✗ ✗ ✗

104 FR-1 2 ✗ ✗ ✗ ✗ ✗

105 PL-1 3 ✗ ✗ ✗ ✗ ✗

106 SI-1 2 ✗ ✗ ✗ ✗ ✗

Total Detected Path# 207 45 51 43 79 88

and 13 as vulnerable. The full version of this paper [48] provides details on the affected applications,
including their versions, root causes of the detected vulnerabilities, and their system impacts.
Comparison with Ripses. Rips produces 45 true positive paths (27 SSRFs) with only built-in

sources and sinks. When third-party sources and sinks are added, Rips∗ produces 58 true positive
paths (4 more SSRFs). The detection rate is 78.3% and 72.0% lower than Artemis’s. The primary
factor is that Rips does not support object-oriented features, overlooking vulnerabilities in class

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

128:20 Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He

methods. For example, in Figure 8, Rips fails to detect the taint propagation from the method call
on line #22 to the method on line #28, resulting in a false negative.

1 class Request {

2 public function getData (...) {} //PHPJoern ignores

3 } //calls to getData
4 //due to duplicate
5 class PdfWriterService { //function names in

6 public function getData (...) {} //different classes

7 }
8
9 class ApiController { //TChecker skips updateProducts due

10 public function updateProducts() //to missing call path

11 { //Unknown type to Phan and Psalm

12 $this-> Product =$this->getTable()->get('Products');

13 $productsData=$this->getRequest()-> getData ('data.data');

14 $products=[]; //foreach is not modeled by TChecker

15 foreach ($productsData as $product){

16 $manufacturerIsOwner=$this->Product->find(...)->count();
17 if (!$manufacturerIsOwner) {
18 throw ...;
19 }
20 $products[]=[$product['image']];
21 } //Unknown type to Phan and Psalm

22 $this-> Product -> changeImage ($products);

23 } //Method call ignored by Rips
24 }
25
26 class ProductsTable {
27 // $products propagates to sink
28 public function changeImage($products) {...}
29 }

Fig. 8. A newly found CVE-2023-46725 has been con-

firmed by the developer. Rips, PHPJoern, TChecker,

Psalm, and Phan all fail to detect the vulnerability.

Comparison with PHPJoerns. PHPJoern
detects 51 true positive paths (30 SSRFs) with
only built-in sources and sinks, which is 75.4%
fewer than Artemis. After incorporating third-
party sources and sinks, PHPJoern∗ identifies
80 true positive paths (49 SSRFs), still 61.4%
fewer than Artemis. The primary reason is PH-
PJoern’s incomplete call graph construction.
PHPJoern struggles with object-oriented pro-
gramming where methods in different classes
may have the same name. For example, in Fig-
ure 8, twomethods named getData exist in differ-
ent classes, but PHPJoern cannot distinguish
them, leading to early termination of taint paths
on line #13 and therefore false negatives.

ComparisonwithTCheckers.TChecker
and TChecker† identify 43 true positive paths
(25 SSRFs) with only built-in sources and sinks,
and TChecker∗ identifies 52 true positive paths
(28 SSRFs) when third-party sources and sinks
are included. The detection rate is 79.2% and
74.9% lower than Artemis’s. TChecker’s de-
sign of starting analysis from the top-level func-
tion of each PHP file leads to a comparative
low detection rate of SSRFs. Specifically, many
true SSRF paths do not have an explicit caller-
callee relationship with the top-level functions, causing TChecker’s misdetection. Furthermore,
TChecker’s propagation rules are incomplete. TChecker does not model tainted arrays iterated
through foreach loops. For example, in Figure 8, method updateProducts is skipped from the analysis
of Tchecker. Additionally, the taint is propagated in a foreach loop at line #15, which is also
ignored by TChecker.
Comparison with Psalms. Psalm and Psalm† detect 79 true positive paths (48 SSRFs) with

only built-in sources and sinks, which is 61.8% fewer than Artemis. With third-party sources and
sinks, Psalm∗ detects 132 true positive paths (65 SSRFs), still 36.2% fewer. The main reason is that
Psalm fails to handle implicit call graph connection, particularly in cases where type inference fails.
Psalm relies on type annotations in comments to determine variable types. If the type of a variable
cannot be inferred, method calls on that variable are ignored, cutting off the taint propagation path.
For example, in Figure 8, Psalm fails to infer the type of $this->Product, ignoring the changeImage

method call, leading to a false negative.
Comparison with Phans. Phan and Phan† produce 88 true positive paths (50 SSRFs) with only

built-in sources and sinks, and Phan∗ produces 172 true positive paths (85 SSRFs) when third-party
sources and sinks are added. Although surpassing other tools, Phan’s detection rate falls short
of Artemis by 57.5% and 16.9%, respectively. Like Psalm, Phan fails to create implicit call graph
connections and cannot infer the type of $this->Product in Figure 8, missing the implicit call target
on line #22 and thus failing to propagate the taint. Additionally, Phan does not model implicit

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

Artemis: Toward Accurate Detection of Server-Side Request Forgeries 128:21

Table 5. Detection results of Artemises, TCheckers, Phans, Ripses, PHPJoerns, and Psalms.

Approaches TP CVE Nums TP Path Nums FP Path Nums Precision

Artemis 106 207 15 93.2%
Rips 27 -74.5% 45 -78.3% 139 +8.27x 24.5%
Rips∗ 31 -70.8% 58 -72.0% 149 +8.93x 28.0%
PHPJoern 30 -71.7% 51 -75.4% 100 +5.67x 33.8%
PHPJoern∗ 49 -53.8% 80 -61.4% 113 +6.53x 41.5%
TChecker 25 -76.4% 43 -79.2% 57 +2.80x 43.0%
TChecker∗ 28 -73.6% 52 -74.9% 63 +3.20x 45.2%
TChecker† 25 -76.4% 43 -79.2% 36 +1.40x 54.4%
Psalm 48 -54.7% 79 -61.8% 138 +8.20x 36.4%
Psalm∗ 65 -38.7% 132 -36.2% 149 +8.93x 47.0%
Psalm† 48 -54.7% 79 -61.8% 92 +5.13x 46.2%
Phan 50 -52.8% 88 -57.5% 156 +9.40x 36.1%
Phan∗ 85 -19.8% 172 -16.9% 166 +10.07x 50.9%
Phan† 50 -52.8% 88 -57.5% 124 +7.27x 41.5%
Artemis𝑎 53 -50.0% 97 -53.1% 11 -26.7% 89.8%
Artemis𝑐 89 -16.0% 181 -12.6% 15 +0% 92.3%
Artemis𝑡 102 -3.8% 198 -4.3% 153 +9.20x 56.4%
Artemis𝑝 106 +0% 207 +0% 35 +1.33x 85.5%

data flow relationships, such as those established by the extract function, leading to further false
negatives.

As shown in the preceding comparisons, while existing approaches boost their true positive rates
by including third-party sources and sinks, they still suffer low detection coverage (16.9% to 74.9%
fewer than Artemis) due to their lack of support for implicit call targets and implicit data flows.

Comparison with Ablated Artemises. Removing the third-party source and sink identification
module from Artemis results in only 97 true positive paths (53 SSRFs), 53.1% fewer than the full
version. The low number of true positive paths highlights the widespread use of third-party sources
and sinks in modern PHP applications and the critical importance of this module.

Removing statically inferred call graph construction results in 181 true positive paths (89 SSRFs),
12.6% fewer than Artemis. The 26 false negatives are due to lack of support for implicit call
targets: 4 from missing magic methods, 18 from known method names with variable class names, 3
from known class names with variable method names, and 2 from both class and method names
being unknown. Although implicit call targets are not frequently used, ignoring them causes false
negatives. One case (CVE-2023-40969) involves both magic methods and known class names with
variable method names.

By replacing the rule-based taint analysis module with generic propagation rules from Phan, 198
TPs are produced, which is 4.3% fewer than Artemis due to implicit data flow.

Removing the false positive pruning module does not impact detection coverage, because this
module is specifically designed to reduce false positives deterministically, and conditions that
cannot be statically verified are ignored.

4.2.2 False Positives. The detection precision of Artemis, Rips, PHPJoern, TChecker, Psalm,
Phan, and the ablated versions of Artemis are presented in Table 5. Artemis produces 15 false
positives, achieving a precision rate of 93.2%.

Comparison with Ripses. Rips and Rips∗ generate 149 false positives with third-party sources
and sinks, and 139 without, having the lowest precision rates of 28.0% and 24.5%. This is mainly
due to Rips’s over-tainting, assuming tainted parameters make return values tainted. Additionally,
Rips lacks support for safety string analysis and considers any string constructed with a tainted
variable as tainted, regardless of whether the tainted input controls the critical parts of the string.
These over-tainting issues lead to a significant number of false positives.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

128:22 Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He

Comparison with PHPJoerns. PHPJoern and PHPJoern∗ generate 100 false positives with
third-party sources and sinks and 113 without, with a precision rate of 41.5% and 33.8%, respectively.
PHPJoern has high false positive rates mainly because of the lack of safety string analysis and
false positive pruning.
Comparison with TCheckers. TChecker and TChecker∗ produce 63 false positives with

third-party sources and sinks and 57 without, resulting in a precision rate of 45.2% and 43.0%,
respectively. The relatively low number of false positives is due to many functions (that are not
explicitly invoked by the top-level functions) not being analyzed by TChecker, which also results
in fewer true positive paths. Consequently, TChecker remains less precise compared to Artemis.
Compared to TChecker, TChecker† reduces false positives to 36, a decrease of 36.8%.
Comparison with Psalms. Psalm and Psalm∗ produce 149 false positives with third-party

sources and sinks and 138 without, achieving a precision rate of 47.0% and 36.4%. Psalm† produces
92 false positives, a 33. 3% decrease compared to Psalm.
Comparison with Phans. Phan and Phan∗ have the most false positives, 166 with and 156

without, resulting in precision rates of 50.9% and 36.1%. With the false positive pruning module,
Phan† produces 124 false positives, resulting in a 20.5% decrease.

TCheckers, Psalms, and Phans have high false positive rates due to their generic propagation
rules. Without safety string analysis, they over-taint URL strings when tainted input does not affect
critical URL parts. The absence of path condition analysis also leads to reporting infeasible paths,
further increasing their false positives. We have observed that integrating the path condition analysis
module into existing approaches significantly reduces false positives, for example, TChecker†
reduces the false positives reported by TChecker by 36.8%. However, without the augmented taint
propagation and clearance rules in Artemis, existing approaches relying solely on post-processing
for pruning false positives are imprecise.

Comparison with Ablated Artemises. Removing the third-party source and sink identification
module results in 11 false positives, slightly reducing the number of false positives, but at the cost
of 53.1% fewer true positive paths, highlighting the importance of this module.

Replacing the rule-based taint analysis module with propagation rules from Phan results in 153
false positives, 9.2 times more than the full version of Artemis. This sharp increase is due to the
lack of safety string assurance rules, which prevents proper handling of cases where user-controlled
input cannot control critical parts of request-sending URLs, such as query parameters or parts of
file-accessing URLs.
Removing the false positive pruning module leads to 35 false positives, an increase of 133.3%

compared to the full version of Artemis. The increase in false positives suggests the importance of
handling path conditions in SSRF detection.
Discussion. Artemis has 15 false positives due to three key factors. First, four false positives

arise from always unsatisfied conditions involving array variables, which Artemis cannot accu-
rately recognize. Tracking individual elements in PHP arrays is challenging [43] because of PHP’s
lack of formal semantics and the dynamic nature of arrays. Second, six false positives occur due to
user-defined functions that remove slashes (/) from an input string, making it no longer a valid URL
and preventing SSRF. Third, five false positives arise from intended features where developers in-
tentionally allow arbitrary requests for debugging purposes. These features/functions are protected
by file-based authentication, requiring prior access to the server’s file system before debugging
can occur. Pruning these cases requires domain-specific knowledge, making false positive pruning
challenging.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

Artemis: Toward Accurate Detection of Server-Side Request Forgeries 128:23

wp
_re
mo
te_
ge
t

wp
_re
mo
te_
po
st

wp
_re
mo
te_
req
ue
st

Cli
en
t::p

os
t

Cli
en
t::g

et

WP
_H
ttp
::re
qu
es
t

Pe
nd
ing
Re
qu
es
t::g

et

Pe
nd
ing
Re
qu
es
t::h
ea
d

WP
_R
ES
T_
Re
qu
es
t::g

et_
pa
ram

Re
qu
es
t::i
np
ut

Pa
ram

ete
rB
ag
::g
et

Se
rve
rRe
qu
es
t::g

etD
ata

Cli
en
t::r
eq
ue
st
inp
ut

WP
_R
ES
T_
Re
qu
es
t::g

et_
pa
ram

s

Se
rve
rRe
qu
es
t::g

etQ
ue
ry

Se
rve
rRe
qu
es
t::g

etQ
ue
ryP
ara
ms

Se
rve
rRe
qu
es
t::g

etP
ara
m

Cli
en
t::s
en
d

Re
qu
es
t::a
ll

Re
qu
es
t::g

et

Pe
nd
ing
Re
qu
es
t::p

os
t

Se
rve
rRe
qu
es
tIn
ter
fac
e::
ge
tB
od
y

Re
qu
es
t::p

os
t

Ht
tp\
Re
qu
es
t::g

et

Re
qu
es
t::g

etQ
ue
ryP
ara
m

Ca
ke
Re
qu
es
t::d

ata

Se
rve
rRe
qu
es
tIn
ter
fac
e::
ge
tQ
ue
ryP
ara
ms

Ht
tpF
ou
nd
ati
on
\Re
qu
es
t::g

et

Re
qu
es
t::r
eq
ue
st

Re
qu
es
t::h
ea
de
r

Re
qu
es
t::q

ue
ry

Se
rve
rRe
qu
es
tIn
ter
fac
e::
ge
tPa
rse
dB
od
y

Re
qu
es
t::g

etP
ara
m

Re
qu
es
t::g

etQ
ue
ryP
ara
ms

Se
rve
rRe
qu
es
t::w

ith
Pa
rse
dB
od
y

Cu
rl::
do
wn
loa
d

Cu
rl::
ge
t

Cu
rl::
pa
tch

Cu
rl::
po
st

Cu
rl::
pu
t

Pa
ram

ete
rB
ag
::a
ll

Re
qu
es
t::c
oo
kie
s

Re
qu
es
t::p

ara
m

WP
_R
ES
T_
Re
qu
es
t::g

et_
bo
dy

Ht
tp\
Cli
en
t::g

et

Ht
tp\
Cli
en
t::p

os
t

my
bb
::in
pu
t

req
ue
st_
int
erf
ac
e::
raw

_v
ari
ab
le

req
ue
st_
int
erf
ac
e::
se
rve
r

req
ue
st_
int
erf
ac
e::
va
ria
ble

Se
rve
rRe
qu
es
tIn
ter
fac
e::
ge
tH
ea
de
r

He
ad
erB

ag
::a
ll

Ht
tpF
ou
nd
ati
on
\Re
qu
es
t::q

ue
ry

Do
wn
loa
de
r::g

etV
ide
o

Se
rve
rRe
qu
es
t::g

etC
oo
kie

Se
rve
rRe
qu
es
t::g

etS
erv
erP
ara
ms

Se
rve
rRe
qu
es
t::g

etU
ri

Cli
en
t::d

ow
nlo
ad

cu
rl::
__c
on
str
uc
t

req
ue
st:
:ge
t

req
ue
st:
:ge
tPa
th

req
ue
st:
:ge
tRe
ffe
r

req
ue
st:
:po
st

Cli
en
t::p

os
tA
sy
nc

Re
qu
es
t::_
_co
ns
tru
ct

Ht
tpS
oc
ke
t::g

et

Ht
tpS
oc
ke
t::p

os
t

IHT
TP
Re
qu
es
t::f
etc
h

IHT
TP
Re
qu
es
t::f
etc
hF
ull

IHT
TP
Re
qu
es
t::g

et

IHT
TP
Re
qu
es
t::h
ea
d

IHT
TP
Re
qu
es
t::p

os
t

Se
rve
rRe
qu
es
tIn
ter
fac
e::
ge
tC
oo
kie
Pa
ram

s

Se
rve
rRe
qu
es
tIn
ter
fac
e::
ge
tSe
rve
rPa
ram

s

Re
qu
es
t::g

etH
ea
de
r

Re
qu
es
t::h
ea
de
rs

fac
ad
e\R
eq
ue
st:
:pa
ram

fac
ad
e\R
eq
ue
st:
:po
st

WP
_H
ttp
::p
os
t

WP
_R
ES
T_
Re
qu
es
t::g

et_
he
ad
er

WP
_R
ES
T_
Re
qu
es
t::g

et_
he
ad
ers

Re
qu
es
t::i
p

thi
nk
\Re
qu
es
t::i
p

Third-party Source and Sink Names

0
20
40
60
80

100

Us
ag

e
Co

un
t

83

51

30
201717161614131312121110 9 9 8 8 8 8 7 7 7 6 6 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 1

1

Fig. 9. Usage frequency of third-party sources and sinks. The two third-party sources missed by GPT-4o are

marked in red.

4.3 Source and Sink Identification Results
4.3.1 Generalization Analysis. We evaluate the generalizability of our LLM-based source and sink
identification by extending our analysis to multiple state-of-the-art models, including GPT-4o,
LLaMA-3.1 [63], and Claude-3.5-Sonnet [21], without human refinement.

Table 6. Precision, recall, f1-score

and cost of GPT-4o, LLaMA-3.1, and

Claude-3.5.

LLM Precision Recall F1 Cost ($)

GPT-4o 91.1% 97.6% 94.3% 21

Claude-3.5 92.0% 96.4% 94.2% 40

LLaMA-3.1 87.3% 98.8% 92.7% 19

First, we manually create the ground truth by examining
PHPDocs and code examples, classifying all 7,406 third-party
APIs from 250 applications as sources, sinks, or neither. This
manual process yields 44 sources and 40 sinks as our ground
truth. We then measure precision and recall by comparing
the identification outputs of state-of-the-art models with our
ground truth. We present the precision, recall, and cost of
GPT-4o, Claude-3.5, and LLaMA-3.1 in Table 6. We select GPT-
4o as our main assistant model primarily because (1) it has a
balanced precision and recall with the highest F1 score; (2) it
is relatively cost-effective; and (3) its standard API format enables easy extraction of raw model
outputs in JSON. Although GPT-4o misses two sources that are associated with the MipCMS
application, they do not lead to any SSRFs. GPT-4o misses the two sources due to insufficient
context in PHPDocs.

0 10 20 30 40 50 60 70 80 90 100

Third-party Sources and Sinks (%)

80

110

140

170

200

230

Tr
ue

Po
si
tiv

e
Pa

th
s

97

129

164 166 170
190 195 201 202 206 207

1

Fig. 10. Number of true positive

paths detected with 0% to 100% of

frequently-used third-party sources

and sinks.

4.3.2 Sensitivity Analysis. To evaluate how scalable Artemis
is in identifying third-party sources and sinks for use in detect-
ing SSRFs in other PHP applications, we conduct a sensitivity
analysis on all 84 third-party sources and sinks. First, we calcu-
late how many applications each third-party source and sink
appears in, as shown in Figure 9. We conducted the experi-
ment 11 times, progressively incorporating 0%, 10%, ..., up to
100% of the most frequently used sources and sinks in each
iteration to identify SSRFs across all applications. 7

As shown in Figure 10, the number of detected true positive
paths increases logarithmically from 97 to 207 as the inclusion
of third-party sources and sinks rises from 0% to 100%, converging sublinearly. With an inclusion
of 0%, 97 true positive paths involving only PHP built-in sources and sinks are detected. We also
observe that with 50% of inclusion, we achieve 84.5% coverage. This aligns with the frequency

7The two sources missed by GPT-4o are added in the last 10% iteration and do not impact our result.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

128:24 Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He

Table 7. Precision, recall, and construction time of call graphs in Artemis, Rips, PHPJoern, TChecker, Psalm,

and Phan on 10 sample applications.

App
Artemis Rips PHPJoern TChecker Psalm Phan

P / R / Time (ms) P / R / Time (ms) P / R / Time (ms) P / R / Time (ms) P / R / Time (ms) P / R / Time (ms)

Cockpit 70.9% / 99.0% / 19.8 98.1% / 10.9% / 1.1 99.8% / 11.9% / 11.7 95.9% / 38.9% / 233.2 98.7% / 64.4% / 17.8 96.3% / 41.6% / 7.9

i-librarian 96.4% / 100% / 48.5 100% / 76.1% / 4.4 100% / 80.1% / 26.7 99.4% / 92.9% / 47.3 99.0% / 94.1% / 169.1 99.1% / 93.2% / 35.5

leadin 100% / 100% / 9.5 100% / 72.6% / 1.9 100% / 85.1% / 7.1 100% / 100% / 16.9 100% / 100% / 43.1 100% / 100% / 9.3

LibreY 100% / 100% / 4.2 100% / 89.4% / 0.6 100% / 98.3% / 6.9 100% / 100% / 6.1 100% / 100% / 13.7 100% / 95.0% / 3.4

LinkAce 66.9% / 98.3% / 168.1 98.2% / 5.5% / 1.4 98.1% / 5.4% / 22.5 96.3% / 86.0% / 451.8 96.7% / 87.3% / 77.1 96.5% / 86.8% / 110.2

NoneCms 67.4% / 98.5% / 17.3 99.5% / 50.5% / 1.5 99.7% / 51.0% / 12.2 98.0% / 71.2% / 951.1 98.3% / 75.5% / 33.8 98.2% / 73.5% / 9.2

rconfig 97.4% / 100% / 37.1 100% / 79.8% / 7.5 100% / 82.7% / 23.4 99.8% / 92.9% / 536.7 99.8% / 97.4% / 301.3 100% / 95.5% / 30.7

WeBid 99.1% / 99.5% / 67.9 99.8% / 50.6% / 16.5 99.8% / 52.1% / 28.3 99.5% / 96.1% / 282.5 99.1% / 96.6% / 94.2 99.6% / 96.4% / 57.1

wp-fastest-cache 98.3% / 100% / 44.5 100% / 83.7% / 1.6 100% / 87.7% / 12.4 98.9% / 95.8% / 18.4 99.4% / 96.5% / 127.3 100% / 94.6% / 31.3

yzmcms 78.7% / 98.8% / 124.3 99.6% / 32.7% / 8.1 99.8% / 33.9% / 29.7 99.1% / 39.9% / 329.7 99.2% / 41.8% / 215.9 99.4% / 48.5% / 104.9

distribution in Figure 9, where infrequently used sources and sinks appear only once or twice,
having minimal impact on the overall detection rate. Therefore, we believe that our identified set of
third-party sources and sinks can be applied to future application SSRF detection, offering a solid
coverage rate.

4.4 Call Graph Construction Results
In this section, we conduct a small-scale experiment to evaluate the effectiveness of our call graph

construction approach in Section 3.2. We compare Artemis with alternative methods, including
the unique name-matching approach used in Rips and PhpJoern, and the type inference-based
approach used in TChecker, Psalm, and Phan. We select ten moderately sized applications from
our benchmark and manually extract and verify their caller-callee pairs as the ground truth.

Table 7 presents the precision, recall, and speed of different call graph construction approaches.
Among all tools, Artemis consistently achieves the highest recall, ranging from 98.3% to 100%,
indicating superior call graph coverage. However, existing tools exhibit poor recall, significantly
lower than Artemis in some cases. Among them, the name matching-based call graphs (Rips and
PhpJoern) show the lowest recall, with a minimum of just 5.4%. The reason Artemis cannot reach
100% recall is due to incorrect type inference, which is an open problem [25, 78]. On the other
hand, Artemis has the lowest precision due to our over-approximation strategy to identify as many
implicit calls as possible. This relaxation is then tightened by our safety string rules in Section 3.3
and false positive pruning in Section 3.4 to prevent excessive false positives, as many of them are
either untainted or never reach the sink. Therefore, the final SSRF detection in Artemis maintains
high precision despite the lower precision of its call graph module. As shown in Table 5, when
including implicit call graph construction, Artemis does not produce any additional false positives.

Rips and PHPJoern are the fastest because they use simple unique name matching. TChecker,
Psalm, Phan, and Artemis take longer due to type inference. Although Artemis is about 30%
slower than Phan (on which Artemis is based) for implicit call targets, it still completes in less than
1 second for all cases, making the extra construction time worthwhile for better SSRF coverage.
4.5 Detection Time
Artemis executes in 10.4 to 328.1 seconds, averaging 69.5 seconds. Rips completes analysis in 0.2
to 2045.2 seconds, averaging 34.3 seconds. TChecker analyzes projects in 0.4 to 652.1 seconds,
with an average of 33.7 seconds. PHPJoern takes 0.5 to 210.7 seconds, averaging 22.4 seconds.
Psalm requires 0.7 to 921.3 seconds, with an average of 28.1 seconds. Phan finishes analysis in 0.6

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

Artemis: Toward Accurate Detection of Server-Side Request Forgeries 128:25

to 157.4 seconds, averaging 20.9 seconds. Compared to other tools, Artemis on average requires
twice as much time to analyze a project primarily because the call graph generated by Artemis
contains implicit calls ignored by other tools. Each connected implicit call site uncovers additional
hidden call chains, thereby increasing the workload for taint propagation tracking and false positive
pruning.
Rips, TChecker, and PHPJoern cannot complete the analysis on some projects because they

are designed for PHP 7.0 and lack forward compatibility. For example, in Rips, PHPJoern, and
TChecker, the iterative and recursive analysis of PHP 7.4 arrow syntax in lambdas [20] leads to
repeated evaluations of the same functions or string elements, with intermediate results stored
in memory during each iteration or recursion. This continuous accumulation of data without
termination eventually results in an out-of-memory (OOM) condition. The detailed detection time
for each application with all detection tools can be found in the full version of this paper [48].

4.6 Limitations

1 $f = esc_sql($_POST['file']);
2 $q = "INSERT INTO $t VALUES('$f',...)";
3 $wpdb->query($q);
4 ...
5 $r = $wpdb->get_row("SELECT...FROM $t...");
6 readfile($r->file);

Fig. 11. A second-order SSRF (CVE-2020-

24141) missed by Artemis.

False Negatives. Artemis cannot detect second-order
SSRF where user input is first stored in a database and later
retrieved. For example, in Figure 11, user input is saved in
the database on line 3, read from the database on line #8,
and finally used in a sink function on line #14. To detect
such vulnerabilities, we need to model database APIs, infer
database schemas, and identify the affected columns during
data transfer, which is outside the scope of our current
work. Past studies [40, 75] focusing on application-specific
database operations in second-order vulnerabilities can help improve Artemis to detect such SSRF
vulnerabilities.

Language Features. So far, Artemis does not support all dynamic PHP features, such as
argument unpacking, which involves spreading array elements into argument lists. Integrating
this feature into Artemis requires inferring all array elements when constructing implicit call
graphs and updating our taint propagation rules accordingly. To make matters worse, nested arrays,
where an array element is another array, further complicate this feature. Although we have not
observed these features being exploited in existing vulnerabilities, they could lead to undetected
vulnerabilities.

5 Conclusion
In this paper, we introduce Artemis, a static taint analysis tool to effectively identify SSRF vulnera-
bilities. Artemis achieves enhanced detection coverage and accuracy by integrating LLM-based
source and sink identification, explicit and implicit call graph construction, augmented rule-based
taint analysis, and false positive pruning based on path conditions. Artemis operates entirely
automatically without any application-specific domain knowledge. We have implemented a proto-
type of Artemis and tested it with 250 open-source applications. The results reveal that Artemis
successfully identifies 207 true vulnerable paths (106 true SSRFs) and 15 false positives, significantly
outperforming existing tools. Of the 106 SSRFs, 35 are newly discovered. We have reported the 35
new SSRFs to the developers, and 24 SSRFs have been confirmed by the developers and assigned
CVE IDs.

Acknowledgments
We would like to thank the anonymous reviewers for their insightful feedback and valuable
comments. This work was supported by the Shanghai Sailing Program 22YF1428600. Yutian Tang’s

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

128:26 Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He

work was supported in part by the National Natural Science Foundation of China under grant
62202306.

Data-Availability Statement
Artemis’s source code and detailed reports of newly detected SSRFs are available at https://zenodo.
org/records/13353039.

References
[1] 2019. What We Can Learn from the Capital One Hack. https://krebsonsecurity.com/2019/08/what-we-can-learn-from-

the-capital-one-hack.
[2] 2022. CakePHP. https://cakephp.org/.
[3] 2022. Curl Class. https://www.phpcurlclass.com/.
[4] 2022. Guzzle, PHP HTTP client. https://github.com/guzzle/guzzle.
[5] 2022. Laravel Request. https://laravel.com/api/11.x/Illuminate/Http/Request.html.
[6] 2022. phan. https://github.com/phan/phan.
[7] 2022. phan-plugin. https://github.com/wikimedia/mediawiki-tools-phan-SecurityCheckPlugin.
[8] 2022. Yii Request. https://www.yiiframework.com/doc/api/2.0/yii-web-request.
[9] 2023. Awesome-Selfhosted. https://github.com/awesome-selfhosted/awesome-selfhosted.
[10] 2023. CVE database. https://cve.mitre.org/index.html.
[11] 2023. CWE-918: Server-Side Request Forgery (SSRF). https://cwe.mitre.org/data/definitions/918.html.
[12] 2023. function.extract. https://www.php.net/manual/en/function.extract.php.
[13] 2023. Joern. https://github.com/joernio/joern.
[14] 2023. Magic Methods. https://www.php.net/manual/en/language.oop5.overloading.php.
[15] 2023. php-ast. https://github.com/nikic/php-ast.
[16] 2023. Popular Plugins. https://wordpress.org/plugins/browse/popular.
[17] 2023. PSR-5: PHPDoc. https://github.com/php-fig/fig-standards/blob/master/proposed/phpdoc.md.
[18] 2023. Superglobals. https://www.php.net/manual/en/language.variables.superglobals.php.
[19] 2023. Usage statistics of PHP for websites. https://w3techs.com/technologies/details/pl-php.
[20] 2024. Arrow Functions. https://www.php.net/manual/en/functions.arrow.php.
[21] 2024. Claude 3.5 Sonnet. https://www.anthropic.com/news/claude-3-5-sonnet.
[22] 2024. GPT-4o. https://platform.openai.com/docs/models/gpt-4o.
[23] 2024. Object Inheritance. https://www.php.net/manual/en/language.oop5.inheritance.php.
[24] 2024. OWASP Top 10 - 2021. https://owasp.org/Top10/.
[25] 2024. Phan Type Inference Wiki. https://github.com/phan/phan/wiki/Phan-Config-Settings#allow_overriding_vague_

return_types.
[26] 2024. Prompt engineering. https://platform.openai.com/docs/guides/prompt-engineering.
[27] 2024. psalm. https://github.com/vimeo/psalm/.
[28] 2024. Reflection. https://www.php.net/manual/en/intro.reflection.php.
[29] 2024. Type System. https://www.php.net/manual/en/language.types.intro.php.
[30] 2024. Variable Functions. https://www.php.net/manual/en/functions.variable-functions.php/.
[31] 2024. Variable-length argument lists. https://www.php.net/manual/en/functions.arguments.php#functions.variable-

arg-list.
[32] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and VN Venkatakrishnan. 2018. {NAVEX}: Precise and scalable

exploit generation for dynamic web applications. In 27th {USENIX} Security Symposium ({USENIX} Security 18).
377–392. doi:10.5555/3277203.3277232

[33] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock, and Fabian Yamaguchi. 2017. Efficient and flexible discovery
of php application vulnerabilities. In 2017 IEEE european symposium on security and privacy (EuroS&P). IEEE, 334–349.
doi:10.1109/EuroSP.2017.14

[34] Souphiane Bensalim, David Klein, Thomas Barber, and Martin Johns. 2021. Talking About My Generation: Targeted
DOM-based XSS Exploit Generation using Dynamic Data Flow Analysis. In Proceedings of the 14th European Workshop
on Systems Security (Online, United Kingdom) (EuroSec ’21). Association for Computing Machinery, New York, NY,
USA, 27–33. doi:10.1145/3447852.3458718

[35] Tim Berners-Lee, Larry M Masinter, and Mark P. McCahill. 1994. Uniform Resource Locators (URL). RFC 1738.
https://www.rfc-editor.org/info/rfc1738

[36] Stefano Calzavara, Michele Bugliesi, Silvia Crafa, and Enrico Steffinlongo. 2015. Fine-grained detection of privilege
escalation attacks on browser extensions. In Programming Languages and Systems: 24th European Symposium on

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

https://zenodo.org/records/13353039
https://zenodo.org/records/13353039
https://krebsonsecurity.com/2019/08/what-we-can-learn-from-the-capital-one-hack
https://krebsonsecurity.com/2019/08/what-we-can-learn-from-the-capital-one-hack
https://cakephp.org/
https://www.phpcurlclass.com/
https://github.com/guzzle/guzzle
https://laravel.com/api/11.x/Illuminate/Http/Request.html
https://github.com/phan/phan
https://github.com/wikimedia/mediawiki-tools-phan-SecurityCheckPlugin
https://www.yiiframework.com/doc/api/2.0/yii-web-request
https://github.com/awesome-selfhosted/awesome-selfhosted
https://cve.mitre.org/index.html
https://cwe.mitre.org/data/definitions/918.html
https://www.php.net/manual/en/function.extract.php
https://github.com/joernio/joern
https://www.php.net/manual/en/language.oop5.overloading.php
https://github.com/nikic/php-ast
https://wordpress.org/plugins/browse/popular
https://github.com/php-fig/fig-standards/blob/master/proposed/phpdoc.md
https://www.php.net/manual/en/language.variables.superglobals.php
https://w3techs.com/technologies/details/pl-php
 https://www.php.net/manual/en/functions.arrow.php
https://www.anthropic.com/news/claude-3-5-sonnet
https://platform.openai.com/docs/models/gpt-4o
https://www.php.net/manual/en/language.oop5.inheritance.php
https://owasp.org/Top10/
 https://github.com/phan/phan/wiki/Phan-Config-Settings#allow_overriding_vague_return_types
 https://github.com/phan/phan/wiki/Phan-Config-Settings#allow_overriding_vague_return_types
https://platform.openai.com/docs/guides/prompt-engineering
https://github.com/vimeo/psalm/
https://www.php.net/manual/en/intro.reflection.php
https://www.php.net/manual/en/language.types.intro.php
https://www.php.net/manual/en/functions.variable-functions.php /
 https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list
 https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list
https://doi.org/10.5555/3277203.3277232
https://doi.org/10.1109/EuroSP.2017.14
https://doi.org/10.1145/3447852.3458718
https://www.rfc-editor.org/info/rfc1738

Artemis: Toward Accurate Detection of Server-Side Request Forgeries 128:27

Programming, ESOP 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015, Proceedings 24. Springer, 510–534. doi:10.1007/978-3-662-46669-8_21

[37] Bofei Chen, Lei Zhang, Xinyou Huang, Yinzhi Cao, Keke Lian, Yuan Zhang, and Min Yang. 2024. Efficient Detection of
Java Deserialization Gadget Chains via Bottom-up Gadget Search and Dataflow-aided Payload Construction. In 2024
IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 150–150. doi:10.1109/SP54263.2024.00150

[38] Yi Chen, Luyi Xing, Yue Qin, Xiaojing Liao, XiaoFeng Wang, Kai Chen, and Wei Zou. 2019. Devils in the guidance:
predicting logic vulnerabilities in payment syndication services through automated documentation analysis. In
Proceedings of the 28th USENIX Conference on Security Symposium (Santa Clara, CA, USA) (SEC’19). USENIX Association,
USA, 747–764. doi:10.5555/3361338.3361390

[39] Johannes Dahse and Thorsten Holz. 2014. Simulation of Built-in PHP Features for Precise Static Code Analysis.. In
NDSS, Vol. 14. 23–26.

[40] Johannes Dahse and Thorsten Holz. 2014. Static detection of second-order vulnerabilities in web applications. In
Proceedings of the 23rd USENIX Conference on Security Symposium (San Diego, CA) (SEC’14). USENIX Association, USA,
989–1003. doi:10.5555/2671225.2671288

[41] Benjamin Eriksson, Amanda Stjerna, Riccardo De Masellis, Philipp Rüemmer, and Andrei Sabelfeld. 2023. Black Ostrich:
Web Application Scanning with String Solvers. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security (Copenhagen, Denmark) (CCS ’23). Association for Computing Machinery, New York, NY,
USA, 549–563. doi:10.1145/3576915.3616582

[42] Aurore Fass, Dolière Francis Somé, Michael Backes, and Ben Stock. 2021. DoubleX: Statically Detecting Vulnerable
Data Flows in Browser Extensions at Scale. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security (Virtual Event, Republic of Korea) (CCS ’21). Association for Computing Machinery, New
York, NY, USA, 1789–1804. doi:10.1145/3460120.3484745

[43] Daniele Filaretti and Sergio Maffeis. 2014. An executable formal semantics of PHP. In ECOOP 2014–Object-Oriented
Programming: 28th European Conference, Uppsala, Sweden, July 28–August 1, 2014. Proceedings 28. Springer, 567–592.
doi:10.1007/978-3-662-44202-9_23

[44] Riccardo Focardi, Flaminia L. Luccio, and Marco Squarcina. 2012. Fast SQL blind injections in high latency networks. In
2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL). 1–6. doi:10.1109/ESTEL.2012.6400112

[45] Mohammad Ghasemisharif, Chris Kanich, and Jason Polakis. 2022. Towards Automated Auditing for Account and
Session Management Flaws in Single Sign-On Deployments. In 2022 IEEE Symposium on Security and Privacy (SP).
1774–1790. doi:10.1109/SP46214.2022.9833753

[46] Emre Güler, Sergej Schumilo, Moritz Schloegel, Nils Bars, Philipp Görz, Xinyi Xu, Cemal Kaygusuz, and Thorsten Holz.
2024. Atropos: effective fuzzing of web applications for server-side vulnerabilities. In Proceedings of the 33rd USENIX
Conference on Security Symposium (Philadelphia, PA, USA) (SEC ’24). USENIX Association, USA, Article 267, 18 pages.
doi:10.5555/3698900.3699167

[47] Jin Huang, Junjie Zhang, Jialun Liu, Chuang Li, and Rui Dai. 2021. UFuzzer: Lightweight Detection of PHP-Based
Unrestricted File Upload Vulnerabilities Via Static-Fuzzing Co-Analysis. In Proceedings of the 24th International
Symposium on Research in Attacks, Intrusions and Defenses. 78–90. doi:10.1145/3471621.3471859

[48] Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He. 2025. Artemis: Toward Accurate Detection of
Server-Side Request Forgeries through LLM-Assisted Inter-Procedural Path-Sensitive Taint Analysis. Technical Report.
arXiv:2502.21026 [cs.CL]

[49] Martin Johns, Björn Engelmann, and Joachim Posegga. 2008. XSSDS: Server-Side Detection of Cross-Site Scripting
Attacks. In 2008 Annual Computer Security Applications Conference (ACSAC). 335–344. doi:10.1109/ACSAC.2008.36

[50] Mingqing Kang, Yichao Xu, Song Li, Rigel Gjomemo, Jianwei Hou, V. N. Venkatakrishnan, and Yinzhi Cao. 2023. Scaling
JavaScript Abstract Interpretation to Detect and Exploit Node.js Taint-style Vulnerability. In 2023 IEEE Symposium on
Security and Privacy (SP). 1059–1076. doi:10.1109/SP46215.2023.10179352

[51] Zifeng Kang, Song Li, and Yinzhi Cao. 2022. Probe the Proto: Measuring Client-Side Prototype Pollution Vulnerabilities
of One Million Real-world Websites.. In NDSS.

[52] Sojhal Ismail Khan, Dominika C Woszczyk, Chengzeng You, Soteris Demetriou, and Muhammad Naveed. 2021.
Characterizing Improper Input Validation Vulnerabilities of Mobile Crowdsourcing Services. In Proceedings of the
37th Annual Computer Security Applications Conference (Virtual Event, USA) (ACSAC ’21). Association for Computing
Machinery, New York, NY, USA, 944–956. doi:10.1145/3485832.3485888

[53] Soheil Khodayari, Thomas Barber, and Giancarlo Pellegrino. 2024. The Great Request Robbery: An Empirical Study of
Client-side Request Hijacking Vulnerabilities on theWeb, In 45th IEEE Symposium on Security and Privacy. Proceedings
of 45th IEEE Symposium on Security and Privacy. doi:10.1109/SP54263.2024.00098

[54] Soheil Khodayari and Giancarlo Pellegrino. 2021. JAW: Studying Client-side CSRF with Hybrid Property Graphs and
Declarative Traversals. In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, 2525–2542.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

https://doi.org/10.1007/978-3-662-46669-8_21
https://doi.org/10.1109/SP54263.2024.00150
https://doi.org/10.5555/3361338.3361390
https://doi.org/10.5555/2671225.2671288
https://doi.org/10.1145/3576915.3616582
https://doi.org/10.1145/3460120.3484745
https://doi.org/10.1007/978-3-662-44202-9_23
https://doi.org/10.1109/ESTEL.2012.6400112
https://doi.org/10.1109/SP46214.2022.9833753
https://doi.org/10.5555/3698900.3699167
https://doi.org/10.1145/3471621.3471859
https://arxiv.org/abs/2502.21026
https://doi.org/10.1109/ACSAC.2008.36
https://doi.org/10.1109/SP46215.2023.10179352
https://doi.org/10.1145/3485832.3485888
https://doi.org/10.1109/SP54263.2024.00098

128:28 Yuchen Ji, Ting Dai, Zhichao Zhou, Yutian Tang, and Jingzhu He

[55] Soheil Khodayari and Giancarlo Pellegrino. 2023. It’s (DOM) Clobbering Time: Attack Techniques, Prevalence, and
Defenses. In 2023 IEEE Symposium on Security and Privacy (SP). 1041–1058. doi:10.1109/SP46215.2023.10179403

[56] I Luk Kim, Yunhui Zheng, Hogun Park, Weihang Wang, Wei You, Yousra Aafer, and Xiangyu Zhang. 2020. Finding
client-side business flow tampering vulnerabilities. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA,
222–233. doi:10.1145/3377811.3380355

[57] Taekjin Lee, Seongil Wi, Suyoung Lee, and Sooel Son. 2020. FUSE: Finding File Upload Bugs via Penetration Testing..
In NDSS.

[58] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later: large-scale detection of DOM-based XSS.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security (Berlin, Germany) (CCS
’13). Association for Computing Machinery, New York, NY, USA, 1193–1204. doi:10.1145/2508859.2516703

[59] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2021. Detecting Node.js prototype pollution vulnerabilities via
object lookup analysis. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association for Computing
Machinery, New York, NY, USA, 268–279. doi:10.1145/3468264.3468542

[60] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2022. Mining Node.js Vulnerabilities via Object Dependence
Graph and Query. In 31st USENIX Security Symposium (USENIX Security 22). USENIX Association, Boston, MA, 143–160.

[61] Yinxi Liu, Mingxue Zhang, and Wei Meng. 2021. Revealer: Detecting and Exploiting Regular Expression Denial-of-
Service Vulnerabilities. In 2021 IEEE Symposium on Security and Privacy (SP). 1468–1484. doi:10.1109/SP40001.2021.00062

[62] Z. Liu, K. An, and Y. Cao. 2024. Undefined-oriented Programming: Detecting and Chaining Prototype Pollution Gadgets
in Node.js Template Engines for Malicious Consequences. In 2024 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, Los Alamitos, CA, USA, 120–120. doi:10.1109/SP54263.2024.00121

[63] Team Llama3. 2024. The Llama 3 Herd of Models. arXiv:2407.21783 [cs.AI] https://arxiv.org/abs/2407.21783
[64] Changhua Luo, Penghui Li, and Wei Meng. 2022. TChecker: Precise Static Inter-Procedural Analysis for Detecting

Taint-Style Vulnerabilities in PHP Applications. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security (Los Angeles, CA, USA) (CCS ’22). Association for Computing Machinery, New York, NY,
USA, 2175–2188. doi:10.1145/3548606.3559391

[65] Ibéria Medeiros, Nuno F. Neves, and Miguel Correia. 2014. Automatic Detection and Correction of Web Application
Vulnerabilities Using Data Mining to Predict False Positives. In Proceedings of the 23rd International Conference on
World Wide Web (Seoul, Korea) (WWW ’14). Association for Computing Machinery, New York, NY, USA, 63–74.
doi:10.1145/2566486.2568024

[66] Marius Musch, Robin Kirchner, Max Boll, and Martin Johns. 2022. Server-Side Browsers: Exploring the Web’s Hidden
Attack Surface. In Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security (Nagasaki,
Japan) (ASIA CCS ’22). Association for Computing Machinery, New York, NY, USA, 1168–1181. doi:10.1145/3488932.
3517414

[67] Oswaldo Olivo, Isil Dillig, and Calvin Lin. 2015. Detecting and Exploiting Second Order Denial-of-Service Vulnerabilities
in Web Applications. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security
(Denver, Colorado, USA) (CCS ’15). Association for Computing Machinery, New York, NY, USA, 616–628. doi:10.1145/
2810103.2813680

[68] OpenAI. 2023. GPT-4 Technical Report. https://arxiv.org/abs/2303.08774.
[69] Giancarlo Pellegrino, Onur Catakoglu, Davide Balzarotti, and Christian Rossow. 2016. Uses and abuses of server-side

requests. In Research in Attacks, Intrusions, and Defenses: 19th International Symposium, RAID 2016, Paris, France,
September 19-21, 2016, Proceedings 19. Springer, 393–414. doi:10.1007/978-3-319-45719-2_18

[70] Giancarlo Pellegrino, Martin Johns, Simon Koch, Michael Backes, and Christian Rossow. 2017. Deemon: Detecting
CSRF with Dynamic Analysis and Property Graphs. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery, New York, NY,
USA, 1757–1771. doi:10.1145/3133956.3133959

[71] Joanna CS Santos, Mehdi Mirakhorli, and Ali Shokri. 2024. Seneca: Taint-Based Call Graph Construction for Java Object
Deserialization. Proceedings of the ACM on Programming Languages 8, OOPSLA1 (2024), 1125–1153. doi:10.1145/3649851

[72] Youkun Shi, Yuan Zhang, Tianhao Bai, Lei Zhang, Xin Tan, and Min Yang. 2024. RecurScan: Detecting Recurring
Vulnerabilities in PHP Web Applications. In Proceedings of the ACM Web Conference 2024 (Singapore, Singapore)
(WWW ’24). Association for Computing Machinery, New York, NY, USA, 1746–1755. doi:10.1145/3589334.3645530

[73] Youkun Shi, Yuan Zhang, Tianhan Luo, Xiangyu Mao, Yinzhi Cao, Ziwen Wang, Yudi Zhao, Zongan Huang, and Min
Yang. 2022. Backporting Security Patches of Web Applications: A Prototype Design and Implementation on Injection
Vulnerability Patches. In 31st USENIX Security Symposium (USENIX Security 22). USENIX Association, Boston, MA,
1993–2010.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

https://doi.org/10.1109/SP46215.2023.10179403
https://doi.org/10.1145/3377811.3380355
https://doi.org/10.1145/2508859.2516703
https://doi.org/10.1145/3468264.3468542
https://doi.org/10.1109/SP40001.2021.00062
https://doi.org/10.1109/SP54263.2024.00121
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/3548606.3559391
https://doi.org/10.1145/2566486.2568024
https://doi.org/10.1145/3488932.3517414
https://doi.org/10.1145/3488932.3517414
https://doi.org/10.1145/2810103.2813680
https://doi.org/10.1145/2810103.2813680
https://arxiv.org/abs/2303.08774
https://doi.org/10.1007/978-3-319-45719-2_18
https://doi.org/10.1145/3133956.3133959
https://doi.org/10.1145/3649851
https://doi.org/10.1145/3589334.3645530

Artemis: Toward Accurate Detection of Server-Side Request Forgeries 128:29

[74] Marco Squarcina, Mauro Tempesta, Lorenzo Veronese, Stefano Calzavara, and Matteo Maffei. 2021. Can I Take Your
Subdomain? Exploring Same-Site Attacks in the Modern Web. In 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, 2917–2934.

[75] He Su, Feng Li, Lili Xu, Wenbo Hu, Yujie Sun, Qing Sun, Huina Chao, and Wei Huo. 2023. Splendor: Static Detection of
Stored XSS in Modern Web Applications. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis. 1043–1054. doi:10.1145/3597926.3598116

[76] Karthika Subramani, Roberto Perdisci, and Maria Konte. 2021. Detecting and measuring in-the-wild DRDoS attacks at
IXPs. In Detection of Intrusions and Malware, and Vulnerability Assessment: 18th International Conference, DIMVA 2021,
Virtual Event, July 14–16, 2021, Proceedings 18. Springer, 42–67. doi:10.1007/978-3-030-80825-9_3

[77] Avinash Sudhodanan, Soheil Khodayari, and Juan Caballero. 2020. Cross-Origin State Inference (COSI) Attacks:
Leaking Web Site States through XS-Leaks. (2020).

[78] Apil Tamang. 2015. A constraint-based method for flow-sensitive static type analysis Of PHP using the Rascal meta-
programming platform. East Carolina University.

[79] Leon Trampert, Ben Stock, and Sebastian Roth. 2023. Honey, I Cached our Security Tokens Re-usage of Security
Tokens in the Wild. In Proceedings of the 26th International Symposium on Research in Attacks, Intrusions and Defenses
(Hong Kong, China) (RAID ’23). Association for Computing Machinery, New York, NY, USA, 714–726. doi:10.1145/
3607199.3607223

[80] Erik Trickel, Fabio Pagani, Chang Zhu, Lukas Dresel, Giovanni Vigna, Christopher Kruegel, Ruoyu Wang, Tiffany
Bao, Yan Shoshitaishvili, and Adam Doupé. 2023. Toss a fault to your witcher: Applying grey-box coverage-guided
mutational fuzzing to detect sql and command injection vulnerabilities. In 2023 IEEE symposium on security and privacy
(SP). IEEE, 2658–2675. doi:10.1109/SP46215.2023.10179317

[81] Tom Van Goethem, Iskander Sanchez-Rola, and Wouter Joosen. 2023. Scripted Henchmen: Leveraging XS-Leaks
for Cross-Site Vulnerability Detection. In 2023 IEEE Security and Privacy Workshops (SPW). 371–383. doi:10.1109/
SPW59333.2023.00038

[82] E. Wang, J. Chen, W. Xie, C. Wang, Y. Gao, Z. Wang, H. Duan, Y. Liu, and B. Wang. 2024. Where URLs BecomeWeapons:
Automated Discovery of SSRF Vulnerabilities in Web Applications. In 2024 IEEE Symposium on Security and Privacy
(SP). IEEE Computer Society, Los Alamitos, CA, USA, 216–216. doi:10.1109/SP54263.2024.00198

Received 2024-10-16; accepted 2025-02-18

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 128. Publication date: April 2025.

https://doi.org/10.1145/3597926.3598116
https://doi.org/10.1007/978-3-030-80825-9_3
https://doi.org/10.1145/3607199.3607223
https://doi.org/10.1145/3607199.3607223
https://doi.org/10.1109/SP46215.2023.10179317
https://doi.org/10.1109/SPW59333.2023.00038
https://doi.org/10.1109/SPW59333.2023.00038
https://doi.org/10.1109/SP54263.2024.00198

	Abstract
	1 Introduction
	1.1 A Motivating Example
	1.2 Contributions

	2 Related Work
	3 System Design
	3.1 Source and Sink Identification
	3.2 Statically Inferred Call Graph Construction
	3.3 Rule-Based Taint Analysis
	3.4 False Positive Pruning

	4 Evaluation
	4.1 Methodology
	4.2 SSRF Detection Results
	4.3 Source and Sink Identification Results
	4.4 Call Graph Construction Results
	4.5 Detection Time
	4.6 Limitations

	5 Conclusion
	Acknowledgments
	References

