
TFix: Automatic Timeout Bug Fixing in Production Server Systems

Jingzhu He

North Carolina State University

jhe16@ncsu.edu

Ting Dai

North Carolina State University

tdai@ncsu.edu

Xiaohui Gu

North Carolina State University

xgu@ncsu.edu

Abstract—Timeout is widely used to handle unexpected
failures in distributed systems. However, improper use of
timeout schemes can cause serious availability and performance
issues, which is often difficult to fix due to lack of diagnostic
information. In this paper, we present TFix, an automatic
timeout bug fixing system for correcting misused timeout bugs
in production systems. TFix adopts a drill-down bug analysis
protocol that can narrow down the root cause of a misused
timeout bug and producing recommendations for correcting the
root cause. TFix first employs a system call frequent episode
mining scheme to check whether a timeout bug is caused by
a misused timeout variable. TFix then employs application
tracing to identify timeout affected functions. Next, TFix uses
taint analysis to localize the misused timeout variable. Last,
TFix produces recommendations for proper timeout variable
values based on the tracing results during normal runs. We
have implemented a prototype of TFix and conducted extensive
experiments using 13 real world server timeout bugs. Our
experimental results show that TFix can correctly localize the
misused timeout variables and suggest proper timeout values
for fixing those bugs.

I. INTRODUCTION

Timeout is commonly used to handle unexpected failures

in complex distributed systems. For example, when a server

A sends a request to another server B, A can use the

timeout mechanism to avoid endless waiting in case B fails

to respond. However, mis-using timeout mechanisms such

as using either a too large or a too small timeout value can

cause the server system to hang or experience significant

performance slowdown [1], [2], [3]. For example, a misused

timeout bug caused Amazon DynamoDB to experience a

five-hour service outage in 2015 [4]. The root cause of

this bug is due to improper timeout value setting under

unexpected workload increase. Moreover, timeout bugs are

often difficult to fix since most timeout bugs produce no

error message or misleading error messages [3]. In this

paper, we focus on fixing misused timeout bugs which are

caused by misconfigured timeout variables in Java programs.

Our previous bug study [3] shows that 47% real world

timeout bugs fall into this category.

A. A Motivating Example

To better understand how real-world timeout bugs happen,

and how they can affect cloud services, we use the HDFS-

4301 1 bug as one example shown by Figure 1. This

1We use “system name-bug #” to denote different bugs.

ÇÙ×ãâØÕæí�ÂÕáÙÂãØÙÂÕáÙÂãØÙ

ê
ô
ü�
³ù
�
�³
ùü
�
ü�
û

Ô³ÿô�úø³ù�ü�ôúø
æ�ø�³ÆÍ³�ü�ø���

æ�ø�³ÇÍ³ÜâØ�öø��ü��

ê
ô
ü�
³ù
�
�³
ùü
�
ü�
û

Ô³ÿô�úø³ù�ü�ôúø
æ�ø�³ÊÍ³�ü�ø���

æ�ø�³ËÍ³ÜâØ�öø��ü��
��
�
³�
�
öø

��
�
³�


üö
ø

�ø���³ø�÷ÿø��ÿ� ! !!

�ø�øô�ø÷³

ÜâØ�öø��ü���

Figure 1: The HDFS-4301 timeout bug. Checkpointing

from secondary NameNode to NameNode failed with

repeated IOExceptions. The root cause of this bug

is a too small timeout value configured for transferring

large fsimages.

bug is caused by using a too small timeout value (i.e.,

60 seconds) for transferring a large fsimage between the

primary NameNode and the secondary NameNode. In this

bug, the secondary NameNode issues an HTTP GET request

to inform the primary NameNode that the latest fsimage

is available for checkpointing. The primary NameNode

then sends another HTTP GET request to the secondary

NameNode to retrieve the fsimage file. When the fsimage

file is large and/or the network is heavily congested, it takes

the secondary NameNode more than 60 seconds to finish

uploading the fsimage, causing the HTTPURLConnection

timeout between the primary NameNode and the secondary

NameNode. The secondary NameNode endlessly repeats the

same checkpoint operation because the fsimage uploading

keeps failing due to timeout.

Figure 2 shows the major code snippet of the

HDFS-4301 bug. The secondary NameNode invokes the

doCheckpoint function at line #389 in a while loop

(line #368-404) to upload the latest fsimage to the primary

NameNode, periodically. The primary NameNode sends

an HTTP GET request at line #255 to the secondary



//SecondaryNameNode class

360 public void doWork() {

...

368 while (shouldRun) {

...

377 try {

...

386 doCheckpoint();

...

389 } catch (IOException e) {

390 LOG.error("Exception ...");

...//simply logged and then retry

404 }

405 }

504 public boolean doCheckpoint() throws IOException {

...

558 TransferFsImage.uploadImageFromStorage(...);

...

568 }

//TransferFsImage class

168 public static void uploadImageFromStorage(...)

169 throws IOException {

...

176 TransferFsImage.getFileClient(...);

...

191 }

250 static ... getFileClient(...) throws IOException {

... //HTTP GET request

254 URL url = new URL(..."/getimage?"...);

255 return doGetUrl(url, ...);

256 }

258 public static ... doGetUrl(...) throws IOException {

...

261 HttpURLConnection connection;

... /*too small timeout value*/

277 connection.setReadTimeout(timeout);

...

319 InputStream stream = connection.getInputStream();

...

358 num = stream.read(buf);

...

401 }

Throw

Exception

Figure 2: The code snippet of the HDFS-4301 Bug.

The represents the function call flows, while the

represents how IOException happens and how

it is thrown, catched and handled by the Secondary

NameNode.

NameNode to retrieve the fsimage. However, the time-

out value for the HTTPURLConnection is too small,

causing the read operation to timeout and throw an

IOException at line #358. The IOException is thrown

to the getFileClient, uploadImageFromStorage,

and doCheckpoint functions, and finally caught by the

catch block in the doWork function. The secondary

NameNode endlessly retries the doCheckpoint opera-

tion resulting in repeated IOExceptions. However, this

IOException is simply logged at line #390, which does

not provide any information about the root cause of the bug,

that is, the timeout variable is set to be too small. Even if

the developer figures out the root cause is the misconfigured

timeout variable, it is still difficult for the developer to come

up with a proper timeout value that works for his or her

HDFS system.

B. Contribution

In this paper, we present TFix, an automatic misused

timeout bug fixing system. TFix leverages TScope [5] to

detect a timeout bug in server systems. After a timeout bug

is detected, TFix executes a novel drill-down bug analysis

protocol to automatically narrow down the root cause of

the detected timeout bug and produce recommendations for

fixing the timeout bug. TFix first determines whether the de-

tected timeout bug is caused by mis-using a timeout scheme.

To achieve this goal, we leverage a system call frequent

episode mining scheme [6] to check whether any commonly

used timeout functions (e.g., MonitorCounterGroup

function in Flume system [7]) are invoked when the bug is

triggered. If the timeout bug is classified as mis-used timeout

bug, TFix further localizes the functions that are affected by

the timeout bug. Intuitively, when a timeout bug is triggered,

the affected function will either run longer time or run more

frequently. TFix employs an application performance tracing

tool called Dapper [8] to identify timeout bug affected

functions. After the function is identified, we use the taint

analysis tool [9] to narrow down which timeout variable(s)

are used by the affected function. We then perform timeout

variable value recommendation based on the profiled exe-

cution time of the pinpointed function during normal runs.

Specifically, our paper makes the following contributions.

• We describe a novel drill-down bug analysis framework

which can automatically narrow down the root cause of

a misused timeout bug and provide recommendations

for fixing the bug.

• We present a dynamic system call analysis scheme that

can automatically classify a detected bug as misused

timeout bug.

• We describe a hybrid scheme that combines dynamic

application performance tracing and static taint analysis

to localize the misused timeout variable and provide

proper timeout value recommendations for fixing the

timeout bug.

• We have implemented a prototype of TFix and con-

ducted extensive evaluation using 13 real world server

timeout bugs. Our results show that TFix can correctly

classify all tested misused timeout bugs and pinpoint

the exact timeout variable that has caused the timeout

bug. The timeout values suggested by TFix can effec-

tively correct all the tested misused timeout bugs.

The rest of the paper is organized as follows. Section II

describes design details. Section III presents the experi-

mental evaluation. Section IV discusses the limitation of

TFix. Section V discusses related work. Finally, the paper

concludes in Section VI.



Figure 3: The architecture of TFix.

II. SYSTEM DESIGN

In this section, we present the design details of the TFix

system. We first provide an overview about TFix. We then

describe the misused timeout bug classification scheme fol-

lowed by the timeout affected function identification. Next,

we talk about the misused timeout variable identification and

timeout value recommendation.

A. Approach Overview

TFix provides a drill-down bug analysis framework for

fixing misused timeout bugs, which consists of four major

components as shown by Figure 3. When a server system

experiences software hang or performance slowdown, TFix

leverages TScope [5] to identify whether the anomaly is

caused by a timeout bug by analyzing a window of system

call trace collected by the kernel tracing module LTTng [10].

If TScope confirms that the performance anomaly is caused

by a timeout bug, TFix is triggered to conduct further drill-

down analysis. TFix first performs timeout bug classification

to determine whether the timeout bug is caused by mis-using

certain timeout mechanisms (Section II-B). If the classifica-

tion result is positive, TFix employs the application function

tracing framework Dapper [8] to identify which functions are

affected by the misused timeout bug (Section II-C). Next,

TFix leverages static taint analysis to localize which timeout

variables are used by the identified timeout affected function

(Section II-D). Lastly, TFix produces recommendation for

the mis-used timeout variable for fixing the timeout bug

(Section II-E). The whole drill-down bug diagnosis proto-

col is executed automatically without requiring any human

intervention. We will describe each component in details in

the following subsections.

B. Misused Timeout Bug Classification

TFix leverages TScope [5] to determine whether a

detected system anomaly is caused by a timeout bug.

Timeout bugs can be broadly classified into two groups: 1)

misused timeout bug where the system anomaly is caused

by some incorrectly used timeout variables; and 2) missing

timeout bug where the system anomaly is caused by lack of

timeout mechanisms. In this paper, TFix focuses on fixing

misused timeout bug by identifying root cause timeout

variables and suggesting proper timeout values for fixing

the bug. To achieve this goal, TFix first needs to classify a

detected timeout bug as a misused timeout bug. Intuitively,

a misused timeout bug is triggered when a certain

timeout related function (e.g., URL.openConnection,

ServerSocketChannel.open,

ReentrantLock.tryLock) is executed. Thus, TFix

performs misused timeout bug classification by checking

whether timeout related functions are invoked when the

bug is triggered.

TFix first provides an offline comparative analysis to

extract timeout related functions for each server system. We

observe that different server systems often employ different

timeout related classes. However, although each system

has multiple timeout variables to guard connections, those

timeout mechanisms are usually configured by common

timeout configuration classes. For example, Flume’s timeout

mechanisms are built on top of MonitorCounterGroup

inside the instrumentation class, which is used for

monitoring system state and building timers. To identify

those timeout configuration classes, we employ a dual testing

scheme. For each system, we produce a set of test cases each

of which consists of two dual parts: one part uses timeout

and the other part does not employ timeout. For example,

we build a socket connection between the client and HDFS

server to write data into HDFS. The difference between the

two counterparts is that one has socket write timeout while

the other does not. We use HProf [11] to trace the invoked

Java functions during the execution of those dual test cases.

We compare the lists of the Java functions produced by the

two dual test cases in order to extract those functions which

only appear in the profiling result of those test cases with

timeout mechanisms. To further narrow down the scope of

timeout related functions, we only keep those functions that

are related to timeout configuration, network connection and

synchronization since timeout mechanisms need timers to

monitor the elapsed time and timeout mechanisms are often

used in network connection and synchronization operations.

After identifying those timeout related functions, TFix

needs to employ an efficient scheme to match with those

functions during production run. To avoid expensive appli-

cation function instrumentation, TFix employs a system call

frequent episode mining scheme [6] to match with those

timeout related functions. The basic idea is to extract unique

system call sequences produced by those timeout related

functions during the offline analysis. During production run,

TFix performs the frequent episode mining over runtime

system call sequences and checks whether the frequent

system call sequences produced by those timeout related

functions exist in the runtime trace. If we find one or

more timeout related function matching, TFix classifies the

detected bug as a misused timeout bug.



Figure 4: A web search example.

��
���

��
��� ��
���

��
���

�������
�

	�
��
����

��
��
����

�
�����
�����

��
��
����

�
�����
����

��
��
����

�
�����
�����

Figure 5: The

Dapper trace.

C. Timeout Affected Function Identification

After classifying a detected bug as a misused timeout bug,

TFix wants to identify which functions are affected by this

misused timeout bug. To achieve this goal, TFix leverages

a commonly used application performance tracing tool, i.e.,

Google’s Dapper [8] framework. Dapper allows us to trace

the beginning and ending timestamps of all function calls

and the control flow graph for the diagnosed bug. We choose

Dapper tracing tool because it supports distributed systems

and incurs low runtime overhead to production systems.

The existing implementations of Dapper tracing can only be

applied to RPC related functions. TFix augments the Dapper

tracing tool to support all timeout related functions.

Dapper’s tracing can be modeled as a tree. The tree nodes

are called spans and the edges indicate the control flow

between spans. Each span contains a span id and a parent

id. The root span does not have a parent id. All spans in

the tree share the same trace id. A span represents a RPC

connection or a function call, containing the information

of both the caller and callee (or the client and server). A

span also contains a set of activities including the beginning

timestamps, ending timestamps, process name, thread name,

and the messages embedded in a RPC or function call.

For example, in Figure 4, a user issues a web search

request to the local server A. Server A receives the request

and sends the request to the remote server B and C to retrieve

the results. Server B stores the data locally and sends the

result back to Server A. Server C does not contain the data,

thus it sends a request to the remote server D to get the

result before responding to Server A. In this case, a simple

web search contains four RPC calls between the user and

the local server or between servers. When we apply the

Dapper framework to trace the control flow of the example

in Figure 4, we get a RPC tree, shown in Figure 5. The

root span (i.e., Span 0) represents the RPC request and

response between the user and Server A. Span 1 indicates

the RPC connection between Server A and Server B. Span 2

represents the RPC connection between Server A and Server

C. Span 3 illustrates the RPC connection between Server

C and Server D. The edge between each span indicates

a control flow. For example, Server A receives the user’s

{"i":"1b1bdfddac521ce8", "s":"df4646ae00070999",

"b":1543260568612, "e":1543260568654,

"d":"org.apache.hadoop.hdfs.protocol.ClientProtocol.

getDatanodeReport",

"r":"RunJar", "p":["84d19776da97fe78"]

}

Figure 6: A trace example of Dapper.

request and issues RPC call 1 and 2 to Server B and C,

respectively. Thus, Span 1 and Span 2 share the same parent

span (i.e., Span 0).

After retrieving a Dapper trace for a target bug, we

first extract the execution time and frequency of all the

functions invoked when the bug happens. Specifically, we

calculate the frequency of each function by simply counting

how many times it is invoked in the Dapper trace. We

calculate the execution time of each function by subtracting

the beginning time from the ending time. Figure 6 shows

a Dapper trace example. We can see the Dapper trace is

well structured. The trace contains various labels indicating

different kinds of information. Among them, “b” and “e”

indicate the beginning timestamp and the ending timestamp

of a function, respectively. “d” represents the function name

and “r” represents the process name.

We further identify the timeout affected functions by

checking the abnormality of the functions’ execution time

and frequency. We need to consider two cases: 1) a timeout

value is set to be too large or 2) a timeout value is set

to be too small. If the timeout value is set to be too

large, the execution time of the timeout affected function

is much longer than its execution time during the system’s

normal run. If the timeout value is set to be too small, the

system experiences repeated failures due to frequent timeout.

Therefore, the frequency of the timeout affected function is

much higher than its frequency during the system’s normal

run.

For the first case where the timeout value is too large,

we identify a function as a timeout affected function by

checking whether its execution time is much larger than

the maximum execution time during system’s normal run.

For example, in HBase-13647 and HBase-6684, the time-

out value for the RPC connection is misconfigured to be

Integer.MAX_VALUE. The system works fine under nor-

mal state where an HBase client exchanges messages with

an HBase server (e.g., HMaster, RegionServer) within tens

of seconds successfully. However, when the HBase server

fails, the HBase client hangs for about 24 days, causing

the execution time of the HBase client’s RPC function

significantly prolonged. We identify the RPC function as the

timeout affected function based on its increased execution

time.

For the second case where the timeout value is too small,

the system experiences repeated failures due to frequent



//hdfs-site.xml

1327 <property>

1328 <name>dfs.image.transfer.timeout</name>

1329 <value>60000</value>

...

1336 </property>

/* tainted variables */

//DFSConfigKeys class

862 public static final String

863 DFS_IMAGE_TRANSFER_TIMEOUT_KEY

864 = "dfs.image.transfer.timeout";

865 public static final int

866 DFS_IMAGE_TRANSFER_TIMEOUT_DEFAULT = 60 * 1000;

/* timeout affected function */

//TransferFsImage class

258 public static ... doGetUrl(...) throws IOException {

/* timeout variable */

...

271 timeout = conf.getInt(

272 DFSConfigKeys.DFS_IMAGE_TRANSFER_TIMEOUT_KEY,

273 DFSConfigKeys.DFS_IMAGE_TRANSFER_TIMEOUT_DEFAULT);

...

277 connection.setReadTimeout(timeout);

...

319 InputStream stream = connection.getInputStream();

...

358 num = stream.read(buf);

...

401 }

Figure 7: TFix uses the static taint analysis to identify

the misused timeout variable for the HDFS-4301 bug.

timeout. Therefore, the frequency of the root cause function

greatly increases when the timeout bug is triggered while

the execution time of the affected function is similar to the

maximum execution time during the system normal run. We

thus use frequency to identify those timeout related func-

tions. For example, in the HDFS-4301 bug, the system ex-

periences continuous failures. We identify the doGetUrl,

getFileClient, uploadImageFromStorage, and

doCheckpoint functions as timeout affected functions be-

cause of their invocation frequencies significantly increase.

D. Misused Timeout Variable Identification

In this subsection, we describe how TFix identifies the

misused timeout variables contributing to the misused time-

out bugs. Specifically, we adopt the static taint analysis to

correlate the timeout variables with the timeout affected

functions to identify the misused timeout variables.

To localize which timeout variable is used when the bug

happens, we first retrieve all the timeout variables in the

target system. In large scale distributed systems, timeout

variables along with other configurable parameters are often

stored in specific configuration files [12]. For example,

in a Hadoop system, all the configurable variables are

defined with default values in configuration files, such as

HConstant and DFSConfigKeys classes. These vari-

ables’ value can be overridden and customized by users in

.xml configuration files. Thus, all the variables appear in

systems’ configuration files and contain “timeout” keyword

in their names are potentially related to misused timeout

bugs. Next, we taint all these timeout variables and conduct

data flow dependency analysis on them to extract all related

variables statically. We then check whether the timeout

affected functions use the timeout related variables. If a

timeout affected function f uses a timeout related variable

vt, we consider vt as a misused timeout variable candidate.

To achieve high accuracy, we also compare the execution

time of f with the value of vt. If they match, we consider

vt as the misused timeout variable.

For example, Figure 7 shows how TFix uses

the static taint analysis to identify the misused

timeout variable for the HDFS-4301 bug. In this

bug, the default timeout value is set to 60 seconds

in DFS_IMAGE_TRANSFER_TIMEOUT_DEFAULT

in DFSConfigKeys.java. If users configure the

timeout variable dfs.image.transfer.timeout

in hdfs-site.xml, the system uses the configured

value. Otherwise, the system uses the default value.

We annotate both dfs.image.transfer.timeout

and DFS_IMAGE_TRANSFER_TIMEOUT_DEFAULT as

tainted. After applying static taint analysis, we find that

the timeout affected function doGetUrl uses both tainted

variables at line #271-273. Since the user configures

the value of dfs.image.transfer.timeout in

hdfs-site.xml, we determine that the misused timeout

variable is dfs.image.transfer.timeout. We also

perform cross validation between the timeout variable value

and the execution time of the timeout affected function

to confirm whether our timeout variable identification is

accurate.

E. Timeout Value Recommendation

After pinpointing the misused timeout variable, TFix

recommends a proper timeout value to fix the timeout bug.

The timeout value recommendation considers two different

cases: 1) the timeout value is too large or 2) the timeout

value is too small. As mentioned in Section II-C, if the

timeout affected function experiences significant execution

time increase, TFix infers that the timeout bug is caused

by a too large timeout value. In those cases, TFix rec-

ommends to set the timeout value to be the maximum

execution time of the affected function right before the bug

is detected. Such in-situ profiling results should reflect the

system’s current environment such as network bandwidth,

I/O read/write speed, and CPU load. If the timeout bug is

caused by a too small timeout value, we should observe

the frequency of the function execution increases. Under

those circumstances, TFix suggests a larger timeout value

by continuously multiplying the current timeout value by

a ratio α, α > 1 until the timeout bug is corrected. α is

a user configurable parameter which represents the tradeoff

between fast fix and larger timeout delay. In our experiments,

we set α to be 2.



Table I: System description.

System Setup Mode Description

Hadoop Distributed
The utilities and libraries for Hadoop
modules

HDFS Distributed Hadoop distributed file system

MapReduce Distributed Hadoop big data processing framework

HBase Standalone Non-relational, distributed database

Flume Standalone
Log data collection/aggregation
/movement service

III. EXPERIMENTAL RESULTS

In this section, we present experimental evaluation results.

We have implemented a prototype of TFix and conducted

our experiments on a cluster in our research lab. Each host is

equipped with a quad-core Xeon 2.53Ghz CPU along with

16GB memory and runs 64-bit Ubuntu 16.04. The system

call trace is collected using LTTng v2.0.1. The function call

trace is collected using Google’s Dapper framework. We

first introduce our evaluation methodology. We then present

the results of misused timeout bug classification, timeout

affected function identification, misused timeout variable

identification, timeout value recommendation, and overhead.

We also present three case studies to show how TFix correct

timeout bugs in details.

A. Methodology

We collected all the bugs from five open source systems.

All the systems’ names, description and setup mode are

listed in Table I. We set up three systems in distributed

modes to investigate timeout issues occurring on the com-

munication among different nodes in distributed systems.

We reproduce 13 real-world timeout bugs, including 8

misused timeout bugs and 5 missing timeout bugs. These

bugs are collected from bug repositories, e.g., Apache

JIRA [13] and Bugzilla [14]. Each report contains detailed

information, e.g., version number and system’s log informa-

tion. We list the bugs’ description in Table II. In our previous

timeout bug identification work [5], the bug benchmarks

covered all different root causes presented in the timeout

bug study paper [3]. In contrast, TFix focuses on misused

timeout bugs. Moreover, TFix only supports Java application

systems currently.

We run workloads when the system is in the normal

state, in order to approach the real-world system running.

The workloads are also listed in Table II. Specifically, for

the Hadoop, HDFS and MapReduce systems, we run word

count job on a 765MB text file. For the HBase system, we

use the YCSB workload generator to make insertion, query

and update operations on a table. For the Flume system, we

write log events to the log collection tool and distribute the

logs repeatedly. These workloads invoke the timeout related

functions all of our tested timeout bugs.

B. Results

In this subsection, we first present the classification results

for timeout bugs, followed by the identification results for

timeout affected function, and then describe the results of

localizing the misused timeout variable and timeout value

recommendation.
1) Classification results for timeout bugs: TFix classifies

a misused timeout bug by checking whether it invokes

commonly used timeout functions. As mentioned in

Section II-B, our classification scheme matches the runtime

system call traces with the frequent system call episodes

produced by timeout related functions. Table III shows

the classification results. TFix successfully classifies all

the 13 timeout bugs. Table III also shows the matched

timeout related functions, which are often used for network

communications (e.g., ServerSocketChannel.open,

URL.<init>), synchronization operations

(e.g., AtomicReferenceArray.get,

ReentrantLock.unlock), and timer set-

tings (e.g., GregorianCalendar.<init>,

System.nanoTime). The results match our assumption

that timeout mechanisms are used to protect communications

and synchronizations.
2) Timeout affected function identification results: We

use the Dapper framework to trace the function calls for

tested misused timeout bugs. Dapper has various imple-

mentation on different production systems. For example, an

implementation of Dapper, HTrace [15] is integrated into

Hadoop and HBase. We can configure the parameters for

Dapper tracing in the configuration files directly and deploy

the production systems to trace the function calls. However,

the existing Dapper implementation targets at RPC libraries

only. We augment the Dapper implementation by inserting

the instrumentation points on synchronization operations and

IPC calls. For example, the setupConnection function

in Hadoop’s ipc.Client class sets up a connection with

IPC server. This setupConnection function cannot be

traced by the existing HTrace implementation. We formulate

the setupConnection as a span, which contains all the

IPC connection activities, and add annotations to label the

function.

Table IV shows the timeout affected functions identified

by TFix in all tested misused timeout bugs. For Hadoop-

9106, Hadoop-11252(v2.6.4), HDFS-10223, MapReduce-

4089, HBase-15645 and HBase-17341 bug, the timeout

affected functions have larger execution time compare with

that during normal runs. For HDFS-4301 and MapReduce-

6263 bug, the timeout affected functions have higher occur-

rence frequencies with identical execution time during each

function run.
3) Localizing the misused timeout variable and timeout

value recommendation: We adopt existing static taint track-

ing framework, i.e., Checker [9], to localize the misused

timeout variable. Checker includes various useful plugins



Table II: Timeout bug benchmarks.

Bug ID System Version Root Cause Bug Type Impact Workload

Hadoop-9106 v2.0.3-alpha “ipc.client.connect.timeout” is misconfigured
Misused
too large timeout

Slowdown Word count

Hadoop-11252 v2.6.4 Timeout is misconfigured for the RPC connection
Misused
too large timeout

Hang Word count

HDFS-4301 v2.0.3-alpha Timeout value on image transfer operation is small
Misused
too small timeout

Job failure Word count

HDFS-10223 v2.8.0
Timeout value on setting up the SASL connection
is too large

Misused
too large timeout

Slowdown Word count

MapReduce-6263 v2.7.0 “hard-kill-timeout-ms” is misconfigured
Misused
too small timeout

Job failure Word count

MapReduce-4089 v2.7.0 “mapreduce.task.timeout” is set too large
Misused
too large timeout

Slowdown Word count

HBase-15645 v1.3.0 “hbase.rpc.timeout” is ignored
Misused
too large timeout

Hang YCSB

HBase-17341 v1.3.0
Timeout is misconfigured for terminating replication
endpoint

Misused
too large timeout

Hang YCSB

Hadoop-11252 v2.5.0 Timeout is missing for the RPC connection Missing Hang Word count

HDFS-1490 v2.0.2-alpha
Timeout is missing on image transfer between primary
NameNode and Secondary NameNode

Missing Hang Word count

MapReduce-5066 v2.0.3-alpha Timeout is missing when JobTracker calls a URL Missing Hang Word count

Flume-1316 v1.1.0
Connect-timeout and request-timeout are missing
in AvroSink

Missing Hang Writing log events

Flume-1819 v1.3.0 Timeout is missing for reading data Missing Slowdown Writing log events

Table III: TFix’s classification result of timeout bugs.

Bug ID Bug Type Matched Timeout Related Functions
Correct Timeout

Bug Classification?

Hadoop-9106 misused
System.nanoTime, URL.<init>, DecimalFormatSymbols.getInstance,

ManagementFactory.getThreadMXBean
Yes

Hadoop-11252 (v2.6.4) misused Calendar.<init>, Calendar.getInstance, ServerSocketChannel.open Yes

HDFS-4301 misused AtomicReferenceArray.get, ThreadPoolExecutor Yes

HDFS-10223 misused GregorianCalendar.<init>, ByteBuffer.allocateDirect Yes

MapReduce-6263 misused
DecimalFormatSymbols.initialize, ReentrantLock.unlock,

AbstractQueuedSynchronizer, ConcurrentHashMap.PutIfAbsent, ByteBuffer.allocate
Yes

MapReduce-4089 misused
charset.CoderResult, AtomicMarkableReference,

DateFormatSymbols.initializeData
Yes

HBase-15645 misused

CopyOnWriteArrayList.iterator, URL.<init>, System.nanoTime,
AtomicReferenceArray.set, ReentrantLock.unlock,

AbstractQueuedSynchronizer, DecimalFormat.format
Yes

HBase-17341 misused
ScheduledThreadPoolExecutor.<init>, DecimalFormatSymbols.initialize,

System.nanoTime, ConcurrentHashMap.computeIfAbsent
Yes

Hadoop-11252 (v2.5.0) missing None Yes

HDFS-1490 missing None Yes

MapReduce-5066 missing None Yes

Flume-1316 missing None Yes

Flume-1819 missing None Yes

Table IV: The timeout affected functions.

Bug ID Timeout affected functions

Hadoop-9106 Client.setupConnection()

Hadoop-11252 (v2.6.4) RPC.getProtocolProxy()

HDFS-4301 TransferImage.doGetUrl()

HDFS-10223 DFSUtilClient.peerFromSocketAndKey()

MapReduce-6263 YARNRunner.killJob()

MapReduce-4089 TaskHeartbeatHandler.PingChecker.run()

HBase-15645 RpcRetryingCaller.callWithRetries()

HBase-17341 ReplicationSource.terminate()

running on the Java compiler. The plugins can check null

exceptions, invalidate inputs, tainted variables, etc. We apply

the tainted checker on javac complier to localize misused

variables. Specifically, we select all the timeout variables in

configuration files. For each timeout variable, we annotate

it as tainted. We compile the system’s source code on the

javac complier. If Checker catches the tainted variable in

a timeout affected function, we consider it as the misused

timeout variable. Table V shows the misused timeout vari-

ables localized by TFix for 8 misused timeout bugs.

Table V also shows the recommended timeout value

by TFix. After adopting TFix’s recommended value in



Table V: The fixing result of TFix.

Bug ID
Localize the misused

timeout variable

Recommended

timeout value

Timeout value

in the patch

Is bug fixed after

applying TFix Recommendation?

Hadoop-9106 ipc.client.connect.timeout 2s 20s Yes

Hadoop-11252 (v2.6.4) ipc.client.rpc-timeout.ms 80ms 0ms Yes

HDFS-4301 dfs.image.transfer.timeout 120s 60s Yes

HDFS-10223 dfs.client.socket-timeout 10ms 1min Yes

MapReduce-6263 yarn.app.mapreduce.am.hard-kill-timeout-ms 20s 10s Yes

MapReduce-4089 mapreduce.task.timeout 100ms 10min Yes

HBase-15645 hbase.client.operation.timeout 4.05s 20min Yes

HBase-17341 replication.source.maxretriesmultiplier 27ms 1s Yes

the system, we find the anomaly does not occur on the

system anymore under the same workload. We also list

the timeout value in the bugs’ patch file in Table V. We

observe that the timeout values in the patches are not always

correct. When patching misused timeout bugs, developers

usually make the timeout variable configurable for users

and set the default value to be same as the buggy version

before patching. However, it is challenging to make the

correct configurations, even for experienced engineers. For

example, in the patch of Hadoop-11252(v2.6.4), the default

value of the ipc.client.rpc-timeout.ms variable

is configured to be 0 milliseconds. Developers expose the

variable for users to configure. If users do not configure the

variable, the timeout bug still happens in a fixed version.

As shown in Table V, TFix can fix all the misconfig-

ured timeout bugs. However, TFix’s fixing strategy may

be different from the patch. We use HDFS-4301 bug as

an example. In the patch of HDFS-4301, the default value

of dfs.image.transfer.timeout is still set to 60

seconds, which is identical with the timeout value before

patching. However, the patch limits the chunk size for image

transfer, that matched the timeout value. In comparison, TFix

changes the timeout value to 120 seconds, that can also fix

the problem.

We should note that, the recommended timeout value by

TFix might be different under different workloads. This is

our design choice, because a fixed timeout setting cannot

handle unexpected workload changes or environment fluctu-

ations. For example, in HBase-15645 bug, the misused time-

out variable hbase.client.operation.timeout

defines the time to block a certain table to prevent con-

currency issues. Since the table size is small for YCSB

workload in our evaluation, the recommended value by TFix

is only 4.05 seconds. If we use 20 minutes in the patch under

the same YCSB workload, the user will still experience a

noticeable delay (about 20 minutes) in the system.

C. Overhead

In this subsection, we discuss the runtime overhead of

TFix. TFix’s runtime overhead comes from two tracing mod-

ules, i.e., system call tracing and function call tracing. Kernel

level system call tracing only incurs less than 1% overhead

Table VI: The runtime overhead of TFix.

System Workload
Average

CPU Overhead
Standard Deviation
of CPU Overhead

Hadoop Word count 0.29% 0.023%

HDFS Word count 0.44% 0.050%

MapReduce Word count 0.33% 0.012%

HBase YCSB 0.41% 0.024%

to the system [10]. TFix enables function call tracing (the

Dapper tracing) only on a small number of functions which

are related to timeout configuration, network connection, and

synchronization. We run the workloads on each system with

and without tracing. We use the typical benchmarks for all

server systems and impose the same types of workloads

that trigger the tested timeout bugs. We measure the tracing

overhead and list the results in Table VI. We observe that

the overhead of TFix in terms of additional CPU load is

less than 1%, which makes it practical to apply TFix in

real-world production systems.

D. Case Study

In this subsection, we discuss three real world bugs in

detail to show how TFix works.

HDFS-4301: The root cause and how the bug happens

(Figure 1, 2) is already discussed in Section I-A. As

mentioned earlier, a misused timeout value (i.e., 60

seconds) cannot keep the HTTPURLConnection alive

while transferring a large fsimage between the primary

NameNode and the secondary NameNode for checkpoint.

TFix first successfully classifies the bug as a misused timeout

bug, because TFix finds AtomicReferenceArray.get

and ThreadPoolExecutor functions are invoked, when

the bug is triggered. As mentioned in Section II-C, TFix

then identifies a set of timeout affected functions which

have drastically increased invocation frequencies with

similar execution times. As mentioned in Section II-D,

TFix identifies the misused timeout variable as

dfs.image.transfer.timeout with the corre-

sponding function TransferFsImage.doGetUrl(),

using static taint analysis. Last, TFix recommends

the timeout value as 120 seconds for the

dfs.image.transfer.timeout variable by doubling



ÆÙçãéæ×Ù�ÁÕâÕÛÙæ µääàÝ×ÕèÝãâ�ÁÕçèÙæ

ß��ø³ôÿÿ³ý�õ�º³ ûü�����æ�ø�³ÅÍ³çü�ø���êôü�³ù��³�ø�����ø
ÍÕæâÆéââÙæ

Ô³ÿ��ú³ý�õ
Figure 8: The MapReduce-6263 timeout bug. The Ap-

plicationMaster is forcefully killed, losing all job history

after the bug is triggered. The root cause of this bug is

the too small timeout value for killing job request sent

from YarnRunner to the ApplicationMaster.

the timeout value. We replace 60 seconds with 120 seconds

and re-run the workload. We observe the bug does not

happen and the NameNodes can successfully finish the

checkpoint operation.

Hadoop-9106: This bug is caused by setting too large

value to ipc.client.connect.timeout variable.

The IPC client sets up a connection to the IPC server and

the connection timeout value is set to 20 seconds. When

the bug happens, the IPC server fails to respond to the IPC

client and the IPC client relies on the timeout mechanism

to close the connection. Therefore, too large timeout value

causes a noticeable delay on the system.

TFix first successfully classifies the bug as a misused

timeout bug, because TFix finds the matched timeout

related functions System.nanoTime, URL.<init>,

DecimalFormatSymbols.getInstance and

ManagementFactory.getThreadMXBean, when

the bug is triggered. TFix then identifies a timeout

affected function Client.setupConnection()

because of its prolonged execution time. Next,

TFix pinpoints the misused timeout variable as

ipc.client.connect.timeout via static taint

analysis, because it is used by the setupConnection()

function. Last, TFix recommends the timeout value

as 2 seconds, that is the maximum execution time of

Client.setupConnection() during system’s normal

run. We set the ipc.client.connect.timeout to 2

seconds and re-run the system. We observed the bug does

not happen.

MapReduce-6263: This bug is caused by a too small

timeout value for killing MapReduce jobs. As shown by

Figure 8, the YarnRunner sends a killing job request to the

AppliationMaster with the timeout value set to 10 seconds.

However, when the workers are processing a large MapRe-

duce job with limited resources, it takes the ApplicationMas-

ter longer than 10 seconds to finish the job and respond to

the YarnRunner. Instead of keeping waiting for the response

from the ApplicationMaster, the YarnRunner sends a request

to the ResourceManager to kill the ApplicationMaster by

force. This force kill results in job history data loss and

unavailability of the deployed application.

TFix first successfully classifies the bug as a misused

timeout bug, because TFix finds the matched timeout related

functions DecimalFormatSymbols.initialize,

ReentrantLock.unlock,

AbstractQueuedSynchronizer,

ConcurrentHashMap.PutIfAbsent and

ByteBuffer.allocate, when the bug is triggered.

TFix then identifies a timeout affected function

YARNRunner.killJob() because of its increased fre-

quency. Next, TFix pinpoints the misused timeout variable as

yarn.app.mapreduce.am.hard-kill-timeout-ms

via static taint analysis. Last, TFix recommends the timeout

value as 20 seconds by doubling the current timeout value.

We replace 10 seconds with 20 seconds and re-run the

system. We observe the bug does not happen and the job

finishes successfully.

IV. LIMITATION

TFix can localize the misused timeout variable if the

server system uses timeout variables to in timeout handling

operations. However, we observe that some timeout bugs are

caused by hard-coded timeout values. For example, in the

HBASE-3456 bug, the socket timeout value for HBase client

is hard-coded to be 20 seconds in HBaseClient.java.

To fix the bug, the developer introduces a timeout variable

called ipc.socket.timeout and make it configurable

by the user. We found those kind of timeout bugs mainly

occur in early versions of a production system such as

Hadoop 0.x version and HBase 0.x version. Although TFix

cannot localize misused timeout value under those circum-

stances, TFix can identify the bug as a misused timeout bug

and pinpoint the timeout affected function, which provides

important guidance for debugging the problem. As shown

in Table II, TFix works well on bugs in Hadoop 2.x and

HBase 1.2+ which are more recent stable versions.

In order to provide proper timeout value recommen-

dations, TFix needs to assume that the timeout affected

function is invoked before the timeout bug is triggered under

the current workload type. However, this assumption does

not always hold. Under those cases, TFix cannot provide a

proper timeout value recommendation immediately. We can

employ prediction-driven timeout tuning scheme to search

a proper timeout value iteratively, which is part of our on-

going work.

TFix currently only supports server systems written in

Java since we only implement Dapper framework in Java

platforms and our implementation of static taint analysis

only works on Java files that javac compiles. However, our

approach is agnostic to programming languages. TFix can be

easily extended to support other programming languages by



replacing Java specific Dapper and taint analysis components

with other programming language counterparts.

V. RELATED WORK

In this section, we discuss related work with a focus

on describing the difference between TFix and previous

approaches.

Tracing-based bug detection and diagnosis. Previous

work has been done extensively to detect and diagnose

bugs using various tracing techniques. For example, X-

ray [16] diagnosed performance bugs by tracing the inputs

and outputs of different components using dynamic binary

instrumentation and inferencing the traces. Chopstix [17]

collected low-level OS events including scheduling, CPU

utilization, I/O operations, etc. online and reconstructed

these events offline for troubleshooting standalone bugs.

Fournier et al. [18] proposed to analyze dependencies among

processes and how the total elapsed time is distributed using

kernel-level tracing. REPT [19] utilized hardware trace to

reconstruct the program’s execution and employed record-

and-replay techniques for debugging. Magpie [20] instru-

mented middleware and packet transfer points to record

fine-grained system events and correlated these events to

capture the control-flow and resource consumption of each

request for debugging. TScope [5] detected timeout bugs

using timeout related feature selection and machine-learning

based anomaly detection on system call traces. In contrast,

TFix focuses on providing drill down analysis to narrow

down the root cause of misused timeout bugs and further

provide recommendations for fixing those timeout bugs.

Configuration bug detection and diagnosis. Previous

work has been done to study the configuration bugs. Yin et

al. [21] and Xu et al. [12] gave comprehensive studies of

configuration bugs and pointed out configuration errors are

hard to detect and diagnose. SPEX [22] studied configuration

constraints and exposed potential configuration errors by

injecting errors that violate the constraints. ConfValley [23]

introduced a new language to define system validation rules

and check configurations against those rules before the appli-

cation is deployed in production. PCheck [24] analyzed the

application source code and automatically emulated the late

execution that uses configuration values to detect latent con-

figuration errors. CODE [25] detected configuration bugs by

identifying the abnormal program executions using invariant

configuration access rules. ConfAid [26] adopted dynamic

taint tracking method to instrument the binary application

and analyze the information flow in order to pinpoint the root

causes of configuration errors. ConfDiagnoser [27] extracted

the control flow of configuration options, instrumented the

application code for profiling and analyzed the configura-

tion deviation to detect the erroneous configuration option.

EnCore [28] applied machine learning techniques to model

the correlation between the configuration settings and the

executing environment and correlations between configura-

tion entries, in order to learn and detect configuration bugs.

However, the existing approaches detect configuration bugs

by checking whether the system violates predefined rules.

They cannot be readily applied to fix misused timeout bugs

which are triggered during system runtime due to unexpected

input data or computing environment conditions.

Automatic bug fix. Work has also been done for auto-

matic bug fixes. AFix [29] and CFix [30] proposed automatic

patching strategies for concurrency bugs. ClearView [31]

identified violated invariants from erroneous executions and

generated candidate repair patches to change the invariants.

Tian et al. [32] presented an automatic bug fixing patch

identification tool to maintain older stable versions. Tufano

et al. [33] applied an Encoder-Decoder model based on neu-

ral network to mine the existing patches and automatically

generate new patches. In comparison, our work focuses on

fixing misused timeout bugs with a new drill-down bug

analysis approach that can both identify bug root causes and

suggest correct timeout values.

VI. CONCLUSION

In this paper, we have presented TFix, an automatic

timeout bug fixing system for production server systems.

TFix employs a new drill-down analysis framework for

narrowing down the root cause of the misused timeout

bug and recommending bug fix. The drill-down analysis of

TFix consists of four major steps: 1) checking whether the

detected bug is a misused timeout bug by matching common

timeout related functions in different server systems; 2) iden-

tifying abnormal functions which are affected by the timeout

bug using application performance tracing; 3) pinpointing

the root cause timeout variable using static taint analysis;

and 4) recommending proper timeout values based on the

performance tracing results during normal runs. We have

implemented a prototype of TFix and evaluated it using 13

real world timeout bugs in a set of commonly used server

systems (e.g., Hadoop, HBase, Flume). The experimental

results show that TFix can produce effective fix for all

the tested misused timeout bugs. TFix is lightweight and

imposes less than 1% runtime overhead, which makes it

practical for automatically fixing timeout bugs in production

systems.

VII. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

valuable comments. This research is supported in part by

NSF CNS1513942 grant and NSF CNS1149445 grant. Any

opinions expressed in this paper are those of the authors and

do not necessarily reflect the views of NSF.



REFERENCES

[1] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-
anake, T. Do, J. Adityatama, K. J. Eliazar, A. Laksono, J. F.
Lukman, V. Martin et al., “What bugs live in the cloud?: A
study of 3000+ issues in cloud systems,” in SOCC, 2014.

[2] J. Huang, X. Zhang, and K. Schwan, “Understanding issue
correlations: a case study of the hadoop system,” in SOCC,
2015.

[3] T. Dai, J. He, X. Gu, and S. Lu, “Understanding real world
timeout problems in cloud server systems,” in IC2E, 2018.

[4] “Irreversible Failures: Lessons from the DynamoDB Outage,”
http://blog.scalyr.com/2015/09/irreversible-failures-lessons-
from-the-dynamodb-outage/.

[5] J. He, T. Dai, and X. Gu, “Tscope: Automatic timeout bug
identification for server systems,” in ICAC, 2018.

[6] D. J. Dean, H. Nguyen, X. Gu, H. Zhang, J. Rhee, N. Arora,
and G. Jiang, “PerfScope: Practical online server performance
bug inference in production cloud computing infrastructures,”
in SOCC, 2014.

[7] “Flume,” https://flume.apache.org.

[8] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag, “Dap-
per, a large-scale distributed systems tracing infrastructure,”
Technical report, Google, Inc, Tech. Rep., 2010.

[9] “Checker Framework,” https://checkerframework.org.

[10] M. Desnoyers and M. R. Dagenais, “The lttng tracer: A low
impact performance and behavior monitor for gnu/linux,” in
OLS (Ottawa Linux Symposium), vol. 2006. Citeseer, 2006,
pp. 209–224.

[11] “HProf,” https://docs.oracle.com/javase/8/docs/technotes
/samples/hprof.html.

[12] T. Xu and Y. Zhou, “Systems approaches to tackling config-
uration errors: A survey,” ACM Computing Surveys (CSUR),
vol. 47, no. 4, p. 70, 2015.

[13] “Apache JIRA,” https://issues.apache.org/jira.

[14] “Bugzilla,” https://www.bugzilla.org.

[15] “HTrace,” http://htrace.incubator.apache.org/.

[16] M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating
root-cause diagnosis of performance anomalies in production
software,” in OSDI, 2012.

[17] S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. L. Peterson,
“Lightweight, high-resolution monitoring for troubleshooting
production systems.” in OSDI, 2008, pp. 103–116.

[18] P. Fournier and M. R. Dagenais, “Analyzing blocking to
debug performance problems on multi-core systems,” in
SIGOPS, 2010.

[19] W. Cui, X. Ge, B. Kasikci, B. Niu, U. Sharma, R. Wang,
and I. Yun, “Rept: Reverse debugging of failures in deployed
software,” in OSDI, 2018, pp. 17–32.

[20] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using
magpie for request extraction and workload modelling,” in
OSDI, 2004.

[21] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram,
and S. Pasupathy, “An empirical study on configuration errors
in commercial and open source systems,” in Proceedings
of the Twenty-Third ACM Symposium on Operating Systems
Principles. ACM, 2011, pp. 159–172.

[22] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan,
Y. Zhou, and S. Pasupathy, “Do not blame users for mis-
configurations,” in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. ACM, 2013,
pp. 244–259.

[23] P. Huang, W. J. Bolosky, A. Singh, and Y. Zhou, “Confvalley:
a systematic configuration validation framework for cloud
services,” in Proceedings of the Tenth European Conference
on Computer Systems. ACM, 2015, p. 19.

[24] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupa-
thy, “Early detection of configuration errors to reduce failure
damage,” in OSDI, 2016.

[25] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and
A. Kumar, “Context-based online configuration-error detec-
tion,” in Proceedings of the 2011 USENIX conference on
USENIX annual technical conference. USENIX Association,
2011, pp. 28–28.

[26] M. Attariyan and J. Flinn, “Automating configuration trou-
bleshooting with dynamic information flow analysis.” in
OSDI, vol. 10, no. 2010, 2010, pp. 1–14.

[27] S. Zhang and M. D. Ernst, “Automated diagnosis of software
configuration errors,” in Proceedings of the 2013 Interna-
tional Conference on Software Engineering. IEEE Press,
2013, pp. 312–321.

[28] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu,
and Y. Zhou, “Encore: Exploiting system environment and
correlation information for misconfiguration detection,” ACM
SIGARCH Computer Architecture News, vol. 42, no. 1, pp.
687–700, 2014.

[29] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated
atomicity-violation fixing,” in PLDI, 2011.

[30] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu, “Automated
concurrency-bug fixing,” in OSDI, 2012.

[31] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sul-
livan et al., “Automatically patching errors in deployed soft-
ware,” in Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles. ACM, 2009, pp. 87–102.

[32] Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing
patches,” in Proceedings of the 34th International Conference
on Software Engineering. IEEE Press, 2012, pp. 386–396.



[33] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk, “An empirical investigation into learning bug-
fixing patches in the wild via neural machine translation,” in
Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ACM, 2018, pp. 832–
837.


